Civil and Environmental Engr
- CEE 262B/ARC 262B/EGR 262B/URB 262B: Structures and the Urban EnvironmentKnown as "Bridges", this course focuses on structural engineering as a new art form begun during the Industrial Revolution and flourishing today in long-span bridges, thin shell concrete vaults, and tall buildings. Through laboratory experiments students study the scientific basis for structural performance and thereby connect external forms to the internal forces in the major works of structural engineers. Illustrations are taken from various cities and countries thus demonstrating the influence of culture on our built environment.
- CEE 306/ENV 318: Hydrology: Water and ClimateObjective/Overview: Analysis of fundamental processes in the hydrologic cycle, including precipitation, evapotranspiration, infiltration, streamflow and groundwater flow. The class focuses on exercises using observational data. There is a modeling and data analysis component using Python and Jupyter Notebooks, readings on flood and drought, and a forecasting competition.
- CEE 311/CHM 311/GEO 311/ENE 311: Global Air PollutionStudents will study the chemical and physical processes involved in the sources, transformation, transport, and sinks of air pollutants on local to global scales. Societal problems such as photochemical smog, particulate matter, greenhouse gases, and stratospheric ozone depletion will be investigated using fundamental concepts in chemistry, physics, and engineering. For the class project, students will select a trace gas species or family of gases and analyze recent field and remote sensing data based upon material covered in the course. Environments to be studied include very clean, remote portions of the globe to urban air quality.
- CEE 312/MAE 312: Statics of StructuresDevelops notions of internal forces and displacements, and instructs students how to design and analyze structures. Presents the fundamental principles of structural analysis, determination of internal forces, and deflections under the static load conditions, and introduces the bending theory of plane beams and the basic energy theorems. The theory of the first order will be developed for continuous girders, frames, arches, suspension bridges, and trusses, including both statically determinate and indeterminate structures. Basic principles for construction of influence lines and determination of extreme influences will be presented.
- CEE 364/ARC 364/MSE 365: Materials in Civil EngineeringAn introductory course on materials used civil and environmental engineering. Lectures on structure and properties of construction materials including concrete, steel, glass and timber; fracture mechanics; strength testing; mechanisms of deterioration; impact of material manufacturing on the environment. Labs on brittle fracture, heat treatment of steel, strength of concrete, mechanical properties of wood.
- CEE 365: Soil Mechanics and Geotechnical EngineeringPart-1 Classical Soil Mechanics: Physical and engineering properties of soils; soil classification and identification methods; site exploration; sampling; laboratory and in-situ testing techniques; shear strength; bearing capacity; earth pressure; slope stability; permeability and seepage. Part-2 Application of Soil Mechanics in Civil Engineering: Earth retaining structures; deep foundations, ground improvement; tunneling; levees; and construction and contracting implications.
- CEE 376: Independent StudyIndependent research in the student's area of interest. The work must be conducted under the supervision of a faculty member, and must result in a final paper.
- CEE 401/ENV 401: Zero Carbon, Resilient, Equitable Cities: Infrastructure Innovations and Systems AnalysisGoal: introduce undergraduate engineering students to: (a) infrastructure and food system innovations that can advance the triple outcomes of decarbonization, climate resilience and social equity (b) city scale decarbonization pathways and linkage to larger scale national zero carbon pathways (c) fundamentals of inequality and equity (d) hazard risk resilience framework (e) data analysis and systems models for tracking urban zero carbon emissions including material flow analysis sand life-cycle assessment, measuring inequality to inform equity and introductory analysis of resilience pathways.
- CEE 460: Risk AnalysisFundamentals of probabilistic risk analysis. Stochastic modeling of hazards. Estimation of extremes. Vulnerability modeling of natural and built environment. Evaluation of failure chances and consequences. Reliability analysis. Decision analysis and risk management. Case studies involving natural hazards, including earthquakes, extreme winds, rainfall flooding, storm surges, hurricanes, and climate change, and their induced damage and economic losses.
- CEE 461: Design of Large-Scale Structures: BuildingsThis course will focus on the structural design of buildings and is open to students of engineering and of architecture who meet the prerequisites. The course will culminate in a major building design project incorporating knowledge and skills acquired in earlier course work. Structural design is considered from concept development to the completion of detailed design while incorporating appropriate engineering standards and multiple realistic constraints.
- CEE 477/ENE 477: Engineering Design for Sustainable DevelopmentThis course will focus on the sustainable design of urban wastewater infrastructure. Students will learn the principals of biological wastewater modelling and will use software packages and other design tools for design and upgrading existing water/wastewater treatment systems, including new processes that incorporate energy and resource recovery. The projects are considered from concept development to detailed design with special considerations on sustainability and resilience. Guest speakers from academia and industry will be invited to present the new advancements in research and technology.
- CEE 478: Senior ThesisA formal research proposal need to involve analysis, synthesis, and design, directed toward improved understanding and resolution of a significant problem in civil and environmental engineering. The research is conducted under the supervision of a faculty member, and the thesis is defended by the student at a public examination before a faculty committee. The senior thesis is equivalent to a two-semester study and is recorded as a double course in the Spring.
- CEE 507: Independent Study IUnder the direction of a faculty member, each student carries out independent study. Prior to course registration, students must complete a departmental Graduate Independent Study form that describes the work being undertaken, and have the form approved by the supervising faculty member and the Director of Graduate Studies.
- CEE 508: Independent Study IIUnder the direction of a faculty member, each student carries out independent study. Prior to course registration, students must complete a departmental Graduate Independent Study form that describes the work being undertaken, and have the form approved by the supervising faculty member and the Director of Graduate Studies. Usually taken in the Spring semester.
- CEE 509: Directed ResearchUnder the direction of a faculty member, each student carries out research and presents the results. Directed research is normally taken during the first year of study. The total grading of the course will be 25% poster presentation and 75% submitted work.
- CEE 510: Research SeminarThis is a continuation of CEE 509. Each student carries out research, writes a report and presents the research results. Doctoral candidates must complete this course one semester prior to taking the general examination. The total grading of the course is based 10% on oral presentation and written "poster" communication skills and 90% based on advisors evaluation of the semester's work.
- CEE 511: Design of Large-Scale Structures: BuildingsThis course will focus on the structural design of buildings and is open to students of engineering and of architecture who meet the prerequisites. The course will culminate in a major building design project incorporating knowledge and skills acquired in earlier course work. Structural design is considered from concept development to the completion of detailed design while incorporating appropriate engineering standards and multiple realistic constraints.
- CEE 518/ENV 518: Zero Carbon, Resilient, Equitable Cities: Infrastructure Innovations and Systems AnalysisThis course focuses on: a) interdisciplinary conceptual research frameworks to address multi-scale/-sector/-objective urban systems with zero carbon resilience and equity goals; b) city scale carbon accounting incorporating MFA and LCA; c) multi-scale modeling of nested zero carbon pathways in communities; d) data analysis of inequality to inform equity in designing just infrastructure transitions; e) infrastructure and environment related health risk assessment following the global burden of disease methodology; f) measuring carbon and resilience co-benefits of distributed infrastructure systems exploring nexus linkages.
- CEE 520: Applied Network AnalysisNetworks matter! This holds for technical infrastructures, information systems and social media in the WWW, but also for various social, economic and biological systems. What can we learn from data that capture the topology of such complex systems? How can we discover significant patterns in the structure of networks? This course equips you with the analysis techniques needed to answer such questions based on network data across different disciplines. You learn how networked systems can be modeled, how patterns in their topology can be characterized quantitatively, and how complex macroscopic features emerge from simple processes.
- CEE 531/MSE 531: Materials and ProcessesThe course focuses on the linear and non-linear rheology of colloidal materials and materials processing and solidification mechanisms. The rheological sections of the course focus on the fundamentals of rheological properties, viscoelasticity, flow, and constitutive models. The materials processing sections focus on chemistry, physics, and mechanics principles governing the behavior of materials and particulate. The course objective is to teach a framework for quantitative analyses of materials' rheological responses and processes and help students understand materials' capabilities and limitations.
- CEE 546/ARC 566: Form Finding of Structural SurfacesThe course looks at the most inventive structures and technologies, demonstrating their use of form finding techniques in creating complex curved surfaces. The first part introduces the topic of structural surfaces, tracing the ancient relationship between innovative design and construction technology and the evolution of surface structures. The second part familiarizes the student with membranes(systems, form finding techniques,materials and construction techniques.) The third part focuses on rigid surfaces. The fourth part provides a deeper understanding of numerical form finding techniques.
- CEE 571/ENV 571: Environmental ChemistryThis course covers pollutant chemicals in the environment with a focus on water and soil. The focus is on hazardous and toxic chemicals such as benzene, trichloroethane, pesticides and PCBs. In this course, environmental chemistry serves as a vehicle for study of chemical thermodynamics. Students gain an understanding of Gibbs free energy, chemical potential, and fugacity, and the universal applicability of thermodynamics to describe equilibrium and kinetic processes such as phase partitioning.
- CEE 588: Boundary Layer MeteorlogyThis course covers the basic dynamics of the Atmospheric Boundary Layer (ABL) and how it interacts with other environmental and geophysical flows. Topics to be covered include: mean, turbulence, and higher order flow equations, turbulence closure models for the ABL, similarity theories, surface exchanges and their impact on the stability of the atmosphere, the different ABL flow regimes, its role in the hydrologic cycle, the fundamentals of scalar (pollutant, water vapor, etc) transport, modeling and measurement approaches for the ABL, and the role and representation of the ABL in large-scale atmospheric flows and models.
- CEE 599: Special Topics in Environmental Engineering and Water Resources: Pathways to Water Sector DecarbonizationThis course discusses the emerging OneWater framework that offers a holistic and integrated approach to consider all water resources as one water to achieve reliable, sustainable, secure, and resilient water systems. The goal is to create pathways for decarbonization while building OneWater systems for circular water economy/water resiliency/socioeconomic equity. Will identify sources of carbon emissions during water utilization cycle, teach emission quantification tools, investigate mechanisms, processes, technologies and policies that will reduce carbon footprint and potentially lead the sector to become energy positive and carbon negative.
- ECE 455/CEE 455/MAE 455/MSE 455: Optical and Photonic Systems for Environmental SensingThis class will teach you about optical and photonic sensing technologies and their applications to environmental monitoring. The course will contain elements of atmospheric science and Earth observation, fundamentals of optics, photonics and laser physics, as well as a survey of modern optical and spectroscopic sensing applications. In this course students will be asked to prepare two oral presentations and there will be three laboratory assignments focused on fundamentals of optical sensing
- ENV 353/CEE 353/GEO 353: Chemistry of the EnvironmentThis course provides the chemical background to understand many of today's most important environmental issues. Topics include atmospheric pollution, the ozone hole, the greenhouse effect, ocean acidification, acid mine drainage, and coastal dead zones. Overall, the course focuses on a quantitative understanding of the chemistry of the atmosphere and natural waters. Students will use the chemical equilibrium model Minteq to study specific examples related to water quality issues.
- GEO 370/ENV 370/CEE 370: SedimentologyThis course presents a treatment of the physical and chemical processes that shape Earth's surface, such as solar radiation, deformation of the solid Earth, and the flow of water (vapor, liquid, and solid) under the influence of gravity. In particular,the generation, transport, and preservation of sediment in response to these processes is studied in order to better read stories of Earth history in the geologic record and to better understand processes involved in modern and ancient environmental change.
- MSE 517/CEE 517: Structural and Material OptimizationThis class addresses the practical aspects, theory, implementation and utilization of optimization in conjunction with analysis tools. It aims to acquaint the student with the state-of-the-art optimization techniques and their application to engineering problems. Besides traditional methods, it introduces the modern and powerful topology optimization method together with its application to material and structural systems. In this context, it also introduces rapid prototyping and 3D/4D printing techniques at different scales.
- VIS 418/CEE 418: Extraordinary ProcessesStudents will design, build, and critically analyze three common objects, a cushion, a prosthetic, and a light fixture. Each object will be informed by the diverse structural properties of a singular material: ash wood. These objects will be executed quickly and in round-robin fashion, a structure that allows students to be leaders on some assignments and learn from their classmates on others, supported by lab work. The course is capped by a semester-long, collaborative project to design and build a flexible bridge. A larger goal of the class is to compare and contrast methods of evaluation in visual art, engineering, design, and ergonomics.