Civil and Environmental Engr
- CEE 102A/EGR 102A/MAE 102A: Engineering in the Modern WorldLectures and readings focus on bridges, railroads, power plants, steamboats, telegraph, highways, automobiles, aircraft, computers, and the microchip. Historical analysis provides a basis for studying societal impact by focusing on scientific, political, ethical, and aesthetic aspects in the evolution of engineering over the past two and a half centuries. The precepts and the papers will focus historically on engineering ideas including the social and political issues raised by these innovations and how they were shaped by society as well as how they helped shape culture.
- CEE 102B/EGR 102B/MAE 102B: Engineering in the Modern WorldLectures and readings focus on bridges, railroads, power plants, steamboats, telegraph, highways, automobiles, aircraft, computers, and the microchip. We study some of the most important engineering innovations since the Industrial Revolution. The laboratory centers on technical analysis that is the foundation for design of these major innovations. The experiments are modeled after those carried out by the innovators themselves, whose ideas are explored in the light of the social environment within which they worked.
- CEE 207/ENV 207: Introduction to Environmental EngineeringThe course introduces the basic chemical and physical processes of relevance in environmental engineering. Mass and energy balance and transport concepts are introduced and the chemical principles governing reaction kinetics and phase partitioning are presented. We then turn our focus to the applications in environmental engineering problems related to water and air pollution.
- CEE 305/GEO 375/ENE 305: Environmental Fluid MechanicsThe course starts by introducing the conservation principles and related concepts used to describe fluids and their behavior. Mass conservation is addressed first, with a focus on its application to pollutant transport problems in environmental media. Momentum conservation, including the effects of buoyancy and earth's rotation, is then presented. Fundamentals of heat transfer are then combined with the first law of thermodynamics to understand the coupling between heat and momentum transport. We then proceed to apply these laws to study air and water flows in various environmental systems, with a focus on the atmospheric boundary layer.
- CEE 345/STC 345/MSE 345/MAE 327: Origami EngineeringThis class acquaints the student with the state-of-art concepts and algorithms to design and analyze origami systems (assemblies, structures, tessellations, etc). Students will learn how to understand, create and transform geometries by folding and unfolding concepts, and thus apply origami concepts to solve engineering and societal problems. In addition, using origami as a tool, we will outreach to some fundamental concepts in differential geometry.
- CEE 366: Design of Reinforced Concrete StructuresMaterials in reinforced concrete. Flexural analysis and design of beams. Shear and diagonal tension in beams. Short columns. Frames. Serviceability. Bond, anchorage and development length. Slabs. Special topics. Introduction to design of prestressed concrete.
- CEE 374/STC 374: Autonomous Fabrication and RoboticsAn introductory course with several demonstration and hands-on components of fabrication with autonomous and robotic systems. Covers formal methods of fabrication and programming of moderately complex elements, including related fabrication platforms, extrusion platforms, various designs of material, structure, and programming of toolpath. The course is centered around lectures with laboratory/virtual studio individual and team-based assignments involving computer-controlled additive manufacturing and robotic systems, student reading, and peer-reviewed presentation and reporting assignments.
- CEE 375: Independent StudyIndependent Study in the student's area of interest. The work must be conducted under the supervision of a faculty member and must result in a final paper. Permission of advisor and instructor are required. Open to sophomores and juniors. Must fill out Independent Study form.
- CEE 471/GEO 471/URB 471: Introduction to Water Pollution TechnologyAn introduction to the science of water quality management and pollution control in natural systems; fundamentals of biological and chemical transformations in natural waters; indentification of sources of pollution; water and wastewater treatment methods; fundamentals of water quality modeling.
- CEE 474/ENV 474: Special Topics in Civil and Environmental Engineering: Statistical Methods in Water and the EnvironmentStudents will learn different methods required for data analysis and interpretation of processes related to water and the environment. The emphasis will be on formulating questions, choosing appropriate statistical tools for a given problem, and drawing appropriate conclusions from the analyses. The course will cover concepts related to statistical inference and common probabilistic models, linear regression, and expose the students to non-parametric statistics; the students will also learn how to perform these analyses using the R programming language. Statistical methods will be introduced through use of hands-on analyses with real data.
- CEE 478: Senior ThesisA formal research proposal need to involve analysis, synthesis, and design, directed toward improved understanding and resolution of a significant problem in civil and environmental engineering. The research is conducted under the supervision of a faculty member, and the thesis is defended by the student at a public examination before a faculty committee. The senior thesis is equivalent to a two-semester study and is recorded as a double course in the Spring.
- CEE 507: Independent Study IUnder the direction of a faculty member, each student carries out independent study. Prior to course registration, students must complete a departmental Graduate Independent Study form that describes the work being undertaken, and have the form approved by the supervising faculty member and the Director of Graduate Studies.
- CEE 508: Independent Study IIUnder the direction of a faculty member, each student carries out independent study. Prior to course registration, students must complete a departmental Graduate Independent Study form that describes the work being undertaken, and have the form approved by the supervising faculty member and the Director of Graduate Studies. Usually taken in the Spring semester.
- CEE 509: Directed ResearchUnder the direction of a faculty member, each student carries out research and presents the results. Directed research is normally taken during the first year of study. The total grading of the course will be 25% poster presentation and 75% submitted work.
- CEE 510: Research SeminarThis is a continuation of CEE 509. Each student carries out research, writes a report and presents the research results. Doctoral candidates must complete this course one semester prior to taking the general examination. The total grading of the course is based 25% on oral presentation and 75% based on advisors evaluation of the semester's work.
- CEE 538/ART 538: Holistic Analysis of Heritage StructuresHeritage structures represent an important cultural legacy. First, this course identifies particularities relative to structural analysis of heritage structures; it correlates the space and time (where and when the structure was built, used, upgraded, damaged, repaired), with construction materials, techniques, and contemporary architectural forms. Second, the course presents the methods of structural analysis that take into account the identified particularities, that are efficient in finding solutions, and that are simple and intuitive in terms of application and interpretation.
- CEE 545/MAE 556/MSE 535: Origami EngineeringThis class acquaints the student with the state-of-art concepts and algorithms to design and analyze origami systems (assemblies, structures, tessellations, etc). Students learn how to understand, create and transform geometries by folding and unfolding concepts, and thus apply origami concepts to solve engineering and societal problems. In addition, using origami as a tool, we outreach to some fundamental concepts in differential geometry.
- CEE 566: Wind Engineering and Structural DynamicsStudents learn how to account for wind effects in structural design to ensure that the performance of structures subjected to the action of wind are adequate during their anticipated life from the standpoint of both structural safety and serviceability. Three linked topics are discussed: (1) the wind environment, (2) the relation between that environment and the forces it induces on the structure, and (3) the behavior of the structure under the action of these forces.
- CEE 586/ENV 586: Physical HydrologyThis class introduces the components of the hydrologic cycle and their interconnections in a rigorous, quantitative manner. The class focuses on exercises using observational data. There is a modeling and data analysis component using Python and Jupyter Notebooks.
- CEE 587/ENV 587: EcohydrologyThe course provides the theoretical bases for a quantitative description of complex interactions between hydrologic cycle, vegetation and soil biogeochemistry. The first part of the course focuses on modeling the water, carbon and energy dynamics within the soil-plant-atmosphere system at timescales ranging from minute to daily; the second part incorporates rainfall unpredictability and provides a probabilistic description of the soilplant system valid at seasonal to interannual timescales. These concepts are important for a proper management of water resources and terrestrial ecosystems.
- CEE 593/AOS 593: Aerosol Chemistry and PhysicsThis course focuses on ground-based and satellite observations of aerosol particles and their impacts on climate through modeling studies. Course material includes satellite and ground-based measurements of aerosol particles, mathematical formulation of transport, and numerical models of aerosol distribution. It studies how aerosols impact climate change through direct and indirect effects including cloud-aerosol interactions.
- CEE 599/ENE 599: Special Topics in Environmental Engineering and Water Resources: Drinking Water DecarbonizationThe course explores the latest advancements in decarbonizing water treatment and revolutionizing the approach to this critical sector. Focused on addressing challenges posed by climate change, the course provides an overview of cutting-edge techniques and policies to reduce carbon emissions and enhance water treatment processes' sustainability. Students gain practical experience building an interactive database to organize and analyze research findings, and have the opportunity to present their research at a real conference. Industry leader guest lecturers share valuable insights and real-world examples of decarbonization in action.
- CEE 599B: Special Topics in Environmental Engineering and Water Resources: Statistical Methods in Water and the EnvironmentStudents learn different methods required for data analysis and interpretation of processes related to water and the environment. The emphasis is on formulating questions, choosing appropriate statistical tools for a given problem, and drawing appropriate conclusions from the analyses. The course covers concepts related to statistical inference and common probabilistic models, linear regression, and exposes the students to non-parametric statistics; students also learn how to perform these analyses using the R programming language. Statistical methods are introduced through the use of hands-on analyses with real data.
- ENE 504/CEE 504: Membrane Separations for Energy and the EnvironmentThis course explores the fundamentals and applications of selective membrane technology to water purification, waste treatment, and clean energy processes. The course comprises three sections covering 1) low-pressure (ultrafiltration or microfiltration), 2) high-pressure (nanofiltration and reverse osmosis) and 3) ion exchange membranes. In each section, we review one or more specific applications of that type of membrane to water, wastewater, or energy, and discuss the primary mechanisms by which the membranes accomplish filtration, connections between membrane chemistry, morphology, and performance, and basic process design principles.
- ENE 506/MSE 586/MAE 536/CEE 506/CBE 566: Synchrotron and Neutron Techniques for Energy MaterialsTopics include an introduction to radiation generation at synchrotron and neutron facilities, elastic scattering techniques, inelastic scattering techniques, imaging and spectroscopy. Specific techniques include X-ray and neutron diffraction, small-angle scattering, inelastic neutron scattering, reflectometry, tomography, microscopy, and X-ray absorption spectroscopy. Emphasis placed on data analysis and use of Fourier transforms to relate structure/dynamics to experiment data. Example materials covered include energy storage devices, sustainable concrete, carbon dioxide storage, magnetic materials, mesostructured materials and nanoparticles.
- ENV 343/CEE 343/SAS 343/ASA 343: Inequality and Sustainability in India and USA: An Interdisciplinary Global PerspectiveThis course addresses inequality in the context of sustainability, focusing on India with comparison to the USA and global trajectories. Students will explore social inequality and inequality in access to basic services; exposure to environmental pollution and climate risks; participation in governance; and, overall outcomes of sustainability, health and wellbeing. They will learn key theoretical frameworks underpinning inequality and equity, measurement approaches, and explore emerging strategies for designing equitable sustainability transitions, drawing upon engineering, spatial planning, public health, and policy perspectives.
- GEO 361/ENV 361/CEE 360: Earth's AtmosphereThis course discusses the processes that control Earth's climate - and as such the habitability of Earth - with a focus on the atmosphere and the global hydrological cycle. The course balances overview lectures (also covering topics that have high media coverage like the 'Ozone hole' and 'Global warming', and the impact of volcanoes on climate) with selected in-depth analyses. The lectures are complemented with homework based on real data, demonstrating basic data analysis techniques employed in climate sciences.
- GEO 417/CEE 417/EEB 419: Environmental MicrobiologyThe study of microbial biogeochemistry and microbial ecology. Beginning with the physical/chemical characteristics and constraints of microbial metabolism, we will investigate the role of bacteria in elemental cycles, in soil, sediment and marine and freshwater communities, in bioremediation and chemical transformations.
- MAE 223/CEE 223: Modern Solid MechanicsFundamental principles of solid mechanics: equilibrium equations, reactions, internal forces, stress, strain, Hooke's law, torsion, beam bending and deflection, and analysis of stress and deformation in simple structures. Integrates aspects of solid mechanics that have applications to mechanical and aerospace structures (engines and wings), as well as to microelectronic and biomedical devices. Topics include stress concentration, fracture, plasticity, and thermal expansion. The course synthesizes descriptive observations, mathematical theories, and engineering consequences.
- MSE 501/MAE 561/CEE 561/CBE 514: Introduction to MaterialsEmphasizes the connection between microstructure and properties in solid-state materials. Topics include crystallinity and defects, electronic and mechanical properties of materials, phase diagrams and transformations, and materials characterization techniques. Ties fundamental concepts in materials science to practical use cases with the goal of solving complex challenges in sustainability and healthcare, among others.