Geosciences
- AOS 527/GEO 527: Atmospheric Radiative TransferStructure and composition of terrestrial atmospheres. Fundamental aspects of electromagnetic radiation. Absorption and emission by atmospheric gases. Optical extinction of particles. Roles of atmospheric species in Earth's radiative energy balance. Perturbation of climate due to natural and antropogenic causes. Satellite observations of climate system.
- AST 255/CHM 255/GEO 255: Life in the UniverseThis course introduces students to a new field, Astrobiology, where scientists trained in biology, chemistry, astrophysics and geology combine their skills to investigate life's origins and to seek extraterrestrial life. Topics include: the origin of life on earth,the prospects of life on Mars, Europa, Titan, Enceladues and extra-solar planets, as well as the cosmological setting for life and the prospects for SETI. 255 is the core course for the planets and life certificate.
- CEE 305/GEO 375/ENE 305: Environmental Fluid MechanicsThe course starts by introducing the conservation principles and related concepts used to describe fluids and their behavior. Mass conservation is addressed first, with a focus on its application to pollutant transport problems in environmental media. Momentum conservation, including the effects of buoyancy and earth's rotation, is then presented. Fundamentals of heat transfer are then combined with the first law of thermodynamics to understand the coupling between heat and momentum transport. We then proceed to apply these laws to study air and water flows in various environmental systems, with a focus on the atmospheric boundary layer.
- CEE 471/GEO 471/URB 471: Introduction to Water Pollution TechnologyAn introduction to the science of water quality management and pollution control in natural systems; fundamentals of biological and chemical transformations in natural waters; indentification of sources of pollution; water and wastewater treatment methods; fundamentals of water quality modeling.
- ENV 367/GEO 367: Modeling the Earth System: Assessing Strategies for Mitigating Climate ChangeThis course is an introduction to Earth system modeling for students interested in global environmental issues. Students will use results from the Intergovernmental Panel on Climate Change and Earth system models coupling ocean, atmosphere and land to examine how the system responds to human activities. In small groups, they will brainstorm mitigation and geo-engineering solutions and assess their impact on climate. This course is designed to give students a critical thinking about climate models and climate solutions, their strengths and their limitations.
- GEO 203/ENE 203: The Habitable PlanetThis course introduces solid Earth system science, quantifying the underlying physical and chemical processes to study the formation and evolution of Earth through time. We discuss how these processes create and sustain habitable conditions on Earth's surface, including feedbacks and tipping points as recorded in the geologic record. Topics include: stellar and planetary formation, plate tectonics, the geologic record, natural resources, the hydrologic cycle and sedimentation, paleoclimatology, and the "Anthropocene". Students will apply these topics to the recent geologic past to assess the impact of humans on their environments.
- GEO 361/ENV 361/CEE 360: Earth's AtmosphereThis course discusses the processes that control Earth's climate - and as such the habitability of Earth - with a focus on the atmosphere and the global hydrological cycle. The course balances overview lectures (also covering topics that have high media coverage like the 'Ozone hole' and 'Global warming', and the impact of volcanoes on climate) with selected in-depth analyses. The lectures are complemented with homework based on real data, demonstrating basic data analysis techniques employed in climate sciences.
- GEO 363/CHM 331/ENV 331: Environmental Chemistry: Chemistry of the Natural SystemsCovers topics including origin of elements; formation of the Earth; evolution of the atmosphere and oceans; atomic theory and chemical bonding; crystal chemistry and ionic substitution in crystals; reaction equilibria and kinetics in aqueous and biological systems; chemistry of high-temperature melts and crystallization process; and chemistry of the atmosphere, soil, marine and riverine environments. The biogeochemistry of contaminants and their influence on the environment will also be discussed.
- GEO 373: Structural GeologyAn introduction to the physics and geometry of brittle and ductile deformation in Earth's crust. Deformation is considered at scales from atomic to continental, in the context of mountain building, rifting, and the origin of topography.
- GEO 417/CEE 417/EEB 419: Environmental MicrobiologyThe study of microbial biogeochemistry and microbial ecology. Beginning with the physical/chemical characteristics and constraints of microbial metabolism, we will investigate the role of bacteria in elemental cycles, in soil, sediment and marine and freshwater communities, in bioremediation and chemical transformations.
- GEO 419/PHY 419: Physics and Chemistry of Earth's InteriorThis class will introduce students to the modern study of the structure, composition, and evolution of the Earth's interior. We will integrate findings from geophysical observations, laboratory experiments, and computational models to develop a holistic picture of the large-scale behavior of our planet. The course will be divided into four major sections: 1) origin and composition of the Earth; 2) physical and chemical properties of Earth materials; 3) global Earth structure; 4) Earth dynamics. The course will introduce current topics and the latest findings from the scientific literature.
- GEO 421: A Practical Guide to Atomistic Modeling: Applications to Earth and Environmental ScienceThis course explores the fundamentals of atomistic modeling and its applications to the study of material properties. The theory section emphasizes a conceptual framework of atomistic modeling. The section on applications provides examples of deriving material properties using atomistic modeling with available codes/softwares. Students gain experience applying atomistic modeling to their individual areas of research interest, such as material sciences, mineral physics, seismology, geochemistry, and environmental sciences. Individual projects are developed by students throughout the semester.
- GEO 425/MAE 425: Introduction to Ocean Physics for ClimateThe study of the oceans as a major influence on the atmosphere and the world environment. The contrasts between the properties of the upper and deep oceans; the effects of stratification; the effect of rotation; the wind-driven gyres; the thermohaline circulation.
- GEO 506: Fundamentals of the Geosciences IIA survey of fundamental papers in the Geosciences. Topics include present and future climate, biogeochemical processes in the ocean, geochemical cycles, orogenies, thermochronology, Earth structure and mechanics, and seismicity. This is the core geosciences graduate course.
- GEO 557: Theoretical GeophysicsGeophysical applications of the principles of continuum mechanics; conservation laws and constitutive relations and tensor analysis; acoustic, elastic, and gravity wave propagation are studied.
- GEO 561/ENV 561: Earth's AtmosphereThis course discusses the processes that control Earth's climate - and as such the habitability of Earth - with a focus on the atmosphere and the global hydrological cycle. The course balances overview lectures (also covering topics that have high media coverage like the "Ozone hole" and "Global warming," and the impact of volcanoes on climate) with selected in-depth analyses. The lectures are complemented with homework based on real data, demonstrating basic data analysis techniques employed in climate sciences.