Mech and Aerospace Engr
- APC 524/MAE 506/AST 506: Software Engineering for Scientific ComputingThe goal of this course is to teach basic tools and principles of writing good code, in the context of scientific computing. Specific topics include an overview of relevant compiled and interpreted languages, build tools and source managers, design patterns, design of interfaces, debugging and testing, profiling and improving performance, portability, and an introduction to parallel computing in both shared memory and distributed memory environments. The focus is on writing code that is easy to maintain and share with others. Students will develop these skills through a series of programming assignments and a group project.
- AST 551/MAE 525: General Plasma Physics IAn introductory course to plasma physics, with sample applications in fusion, space and astrophysics, semiconductor etching, microwave generation, plasma propulsion, high power laser propagation in plasma; characterization of the plasma state, Debye shielding, plasma and cyclotron frequencies, collision rates and mean-free paths, atomic processes, adiabatic invariance, orbit theory, magnetic confinement of single-charged particles, two-fluid description, magnetohydrodynamic waves and instabilities, heat flow, diffusion, kinetic description, and Landau damping. The course may be taken by undergraduates with permission of the instructor.
- CBE 430/MAE 430/MSE 430: Squishy Engineering: Using Soft Materials to Solve Hard ProblemsThe milk we drink in the morning (a colloidal dispersion), the gel we put into our hair (a polymer network), and the plaque that we try to scrub off our teeth (a biofilm) are all familiar examples of soft or "squishy" materials. Such materials also hold great promise in helping to solve engineering challenges such as water remediation, therapeutic development/delivery, and the development of new coatings, displays, formulations, foods, and biomaterials. This class covers fundamental aspects of the science of soft materials, presented within the context of these challenges, with guest speakers to describe new applications of soft materials.
- CBE 517/MAE 517: Soft Matter Mechanics: Fundamentals & ApplicationsWe cover fundamental aspects of the mechanics of soft matter and see how they provide useful insights about novel engineering designs and materials (3D printing, soft robotics, metamaterials). Particular attention is given to interfacial effects, which dominate the physics of small objects. Topics include, drops, bubbles, wetting, coatings, instabilities. We also cover the mechanics of thin elastic objects whose deformability characterizes many biological systems. Students learn how to build quantitative physical models, combining experimental observations, scaling analysis and formal approaches.
- CEE 102A/EGR 102A/MAE 102A: Engineering in the Modern WorldLectures and readings focus on bridges, railroads, power plants, steamboats, telegraph, highways, automobiles, aircraft, computers, and the microchip. Historical analysis provides a basis for studying societal impact by focusing on scientific, political, ethical, and aesthetic aspects in the evolution of engineering over the past two and a half centuries. The precepts and the papers will focus historically on engineering ideas including the social and political issues raised by these innovations and how they were shaped by society as well as how they helped shape culture.
- CEE 102B/EGR 102B/MAE 102B: Engineering in the Modern WorldLectures and readings focus on bridges, railroads, power plants, steamboats, telegraph, highways, automobiles, aircraft, computers, and the microchip. We study some of the most important engineering innovations since the Industrial Revolution. The laboratory centers on technical analysis that is the foundation for design of these major innovations. The experiments are modeled after those carried out by the innovators themselves, whose ideas are explored in the light of the social environment within which they worked.
- CEE 345/STC 345/MSE 345/MAE 327: Origami EngineeringThis class acquaints the student with the state-of-art concepts and algorithms to design and analyze origami systems (assemblies, structures, tessellations, etc). Students will learn how to understand, create and transform geometries by folding and unfolding concepts, and thus apply origami concepts to solve engineering and societal problems. In addition, using origami as a tool, we will outreach to some fundamental concepts in differential geometry.
- CEE 545/MAE 556/MSE 535: Origami EngineeringThis class acquaints the student with the state-of-art concepts and algorithms to design and analyze origami systems (assemblies, structures, tessellations, etc). Students learn how to understand, create and transform geometries by folding and unfolding concepts, and thus apply origami concepts to solve engineering and societal problems. In addition, using origami as a tool, we outreach to some fundamental concepts in differential geometry.
- ECE 532/COS 572/MAE 572: Safety-Critical Robotic SystemsThe course covers the mathematical foundations of dynamical system safety analysis and modern algorithmic approaches for robotic decision making in safety-critical contexts. The focus is on safe robot learning, multiagent systems, and interaction with humans, paying special attention to uncertainty and the reality gap between mathematical models and the physical world.
- ENE 419/MAE 419: Negative Emission TechnologiesThis course examines the field of carbon capture, conversion, and storage. The course is interdisciplinary and surveys fundamental aspects of combustion, kinetics, material science, thermodynamics and electrochemistry. The class will survey the working principles of existing and emerging technologies that aim to make a critical impact on decarbonizing energy systems. Topics related to carbon capture and negative emission technologies will be discussed.
- ENE 506/MSE 586/MAE 536/CEE 506/CBE 566: Synchrotron and Neutron Techniques for Energy MaterialsTopics include an introduction to radiation generation at synchrotron and neutron facilities, elastic scattering techniques, inelastic scattering techniques, imaging and spectroscopy. Specific techniques include X-ray and neutron diffraction, small-angle scattering, inelastic neutron scattering, reflectometry, tomography, microscopy, and X-ray absorption spectroscopy. Emphasis placed on data analysis and use of Fourier transforms to relate structure/dynamics to experiment data. Example materials covered include energy storage devices, sustainable concrete, carbon dioxide storage, magnetic materials, mesostructured materials and nanoparticles.
- GEO 425/MAE 425: Introduction to Ocean Physics for ClimateThe study of the oceans as a major influence on the atmosphere and the world environment. The contrasts between the properties of the upper and deep oceans; the effects of stratification; the effect of rotation; the wind-driven gyres; the thermohaline circulation.
- MAE 221/ENE 221: ThermodynamicsHeat and work in physical systems. Concepts of energy conversion and entropy, primarily from a macroscopic viewpoint. Efficiency of different thermodynamic cycles, with applications to everyday life including both renewable and classical energy sources. In the laboratory, students will carry out experiments in the fields of analog electronics and thermodynamics.
- MAE 223/CEE 223: Modern Solid MechanicsFundamental principles of solid mechanics: equilibrium equations, reactions, internal forces, stress, strain, Hooke's law, torsion, beam bending and deflection, and analysis of stress and deformation in simple structures. Integrates aspects of solid mechanics that have applications to mechanical and aerospace structures (engines and wings), as well as to microelectronic and biomedical devices. Topics include stress concentration, fracture, plasticity, and thermal expansion. The course synthesizes descriptive observations, mathematical theories, and engineering consequences.
- MAE 305/MAT 391/EGR 305/CBE 305: Mathematics in Engineering IA treatment of the theory and applications of ordinary differential equations with an introduction to partial differential equations. The objective is to provide the student with an ability to solve standard problems in this field.
- MAE 321: Engineering DesignThis course introduces the technical foundation and basic processes of Mechanical Design, which are appropriate for the design of both mechanical systems, and components. The emphasis is on designing for the complete product life-cycle. Topics in parametric design and design optimization using Finite Element Analysis (FEA), Computer Aided Design (CAD), and Manufacturing (CAM) are introduced in the classroom and online and then reinforced by team and individual assignments.
- MAE 322: Mechanical DesignThis course builds on the technical foundations established in MAE 321, and extends the scope to include a range of advanced mechanism designs. Students, working in teams, will be challenged to design and fabricate a robotic system that will draw upon multidisciplinary engineering elements. The robot tasks will be associated with search and rescue operations. CAD, CAE, and CAM will be utilized in the design/simulation/prototype process. Labs are designed to reinforce and expand CAD and CAE skills. A final competition will be held among the design teams.
- MAE 324/MSE 324: Structure and Properties of MaterialsRelates to the structures, properties, processing and performance of different materials including metals, alloys, polymers, composites, and ceramics. This course also discusses how to select materials for engineering applications. This course satisfies the MAE departmental requirement in materials as well as the MSE certificate core requirement.
- MAE 335: Fluid DynamicsThe course is focused on compressible and incompressible inviscid fluid flow. Compressible subsonic and supersonic flows are studied in the first half of the course. The remaining portion of the semester addresses low-speed, incompressible fluid flows and aerodynamics of two and three-dimensional wings and bodies. Concepts of thrust, lift and drag are introduced and applied.
- MAE 339: Junior Independent WorkStudent selects subject and adviser - defines problem to be studied and proposes work plan. A list of possible subjects of particular interest to faculty and staff members is provided. Written report at end of semester.
- MAE 339D: Junior Independent Work with DesignCourse similar to MAE 339. Principal difference is that the project must incorporate aspects and principals of design for a system, product, vehicle, device, apparatus, or other design.
- MAE 341: Space FlightThis course addresses the various concepts that form the basis of modern space flight and astronautics. The focus is on space flight analysis and planning and not hardware or spacecraft design. The topics include space flight history, orbital mechanics, orbit perturbations, near-Earth and interplanetary mission analysis, orbit determination and satellite tracking, spacecraft maneuvers and attitude control, launch and entry dynamics. Use of advanced software for the planning and analysis of space missions.
- MAE 345/COS 346/ECE 345: Introduction to RoboticsRobotics is a rapidly-growing field with applications including unmanned aerial vehicles, autonomous cars, and robotic manipulators. This course will provide an introduction to the basic theoretical and algorithmic principles behind robotic systems. The course will also allow students to get hands-on experience through project-based assignments on quadrotors. In the final project, students will implement a vision-based obstacle avoidance controller for a quadrotor. Topics include motion planning, control, localization, mapping, and vision.
- MAE 354: Unmaking the Bomb:The Science &Technology of Nuclear Nonproliferation, Disarmament, and VerificationNuclear weapons have re-emerged as one of the main global security challenges of our time. Reducing the dangers posed by these weapons will require new verification technologies, and this course covers the relevant science and technology to understand and support such efforts. In the first half of the semester, we will examine the fundamental principles of nuclear fission, nuclear radiation, and radiation detection. As part of hands-on final projects in the second half of the semester, teams of students will prototype and benchmark inspection systems and test them during a joint verification exercise.
- MAE 433: Automatic Control SystemsTo develop an understanding of feedback principles in the control of dynamic systems, and to gain experience in analyzing and designing control systems in a laboratory setting.
- MAE 439: Senior Independent WorkSenior independent work is the culminating experience for the mechanical and aerospace engineering programs. Students select a subject and adviser, define the problem to be studied and propose a work plan. Projects include elements of engineering design, defined as devising a system, component, or process to meet desired needs. A list of possible subjects of particular interest to faculty and staff members is provided. Students must submit a written final report and present their results to faculty, staff, fellow students, and guests.
- MAE 501/APC 501/CBE 509: Mathematical Methods of Engineering Analysis IMethods of mathematical analysis for the solution of problems in physics and engineering. Topics include an introduction to linear algebra, matrices and their application, eigenvalue problems,ordinary differential equations (initial and boundary value, eigenvalue problems), nonlinear ordinary differential equations, stability, bifurcations, Sturm-Liouville theory, Green's functions, elements of series solutions and special functions, Laplace and Fourier transform methods, and solutions via perturbation methods, partial differential equation including self-similar solution, separation of variables and method of characteristics.
- MAE 503: Directed ResearchUnder the direction of a faculty member, the student carries out a one-semester research project chosen jointly by the student and the faculty member. Without prior approval of the Director Graduate Studies, directed research can only be taken during the first year of study. At the beginning of the semester, students must submit the topic of the project and the faculty advisor to the Graduate Office. The project culminates in a final presentation in the style of a conference talk at the end of the semester.
- MAE 513: Independent Project IIndependent project for Master of Engineering students under the direction of a faculty advisor. The project topic and faculty advisor must be sent to the Graduate Office at the beginning of the semester. The project culminates in a oral presentation at the end of the semester
- MAE 531/ENE 531: CombustionChemical thermodynamics and kinetics, oxidation of hydrogen, hydrocarbons and alternate fuels, pollutant chemistry and control, transport phenomena, laminar premixed and nonpremixed flames, turbulent flames, ignition, extinction, and flammability phenomena, flame stabilization and blowoff, detonation and blast waves, droplet, spray and coal particle combustion, principles of engine operation.
- MAE 535: Turbulent Reacting FlowsDetailed treatment of the physics and modeling of turbulent combustion. Turbulent premixed, nonpremixed, and multi-modal combustion are all discussed. Emphasis in the course is placed on understanding relevant physical and chemical phenomena that lead to various modeling approaches (derived from both experiment and computation), the implicit and explicit assumptions in these modeling approaches, and the relative strengths and weaknesses of these modeling approaches.
- MAE 542: Advanced DynamicsPrinciples and methods for formulating and analyzing mathematical models of physical systems; Newtonian, Lagrangian, and Hamiltonian formulations of particle and rigid and elastic body dynamics; canonical transformations, Hamilton-Jacobi theory; and integrable and nonintegrable systems. Additional topics are explored at the discretion of the instructor.
- MAE 549: Introduction to RoboticsRobotics is a rapidly-growing field with applications including unmanned aerial vehicles, autonomous cars, and robotic manipulators. This course provides an introduction to the basic theoretical and algorithmic principles behind robotic systems. The course also allows students to get hands-on experience through project-based assignments on quadrotors. In the final project, students implement a vision-based obstacle avoidance controller for a quadrotor. Topics include motion planning, control, localization, mapping, and vision.
- MAE 551: Fluid MechanicsAn introduction to fluid mechanics: from a rigorous derivation of basic conservation laws in integral and differential form to the exploration of flow physics. The course tackles foundational topics in mass, momentum and energy transport as well as classical topics including vorticity, potential flow, vortex dynamics, and brief introductions to boundary layers and turbulence.
- MAE 567/CBE 568: Crowd Control: Understanding and Manipulating Collective Behaviors and Swarm DynamicsCollective behaviors are all around us, from bird flocking, to mosh pit dynamics, to how the cells in our bodies work together. In this course, we explore not only how to understand and quantify these behaviors, but also how we can start to engineer them to reduce traffic, heal faster, develop new materials, and introduce new robotics approaches. The course spans three modules: hands-on training in analyzing real-world swarming systems; fundamental concepts underlying collective behaviors; and key case studies in manipulating these systems.
- MAE 568/MSE 568: Energy Transport at the NanoscaleThis course seeks to build a bottom-up understanding of energy transport at small length scales by invoking fundamental principles of quantum mechanics, solid-state physics, and statistical mechanics, and combining them with device-relevant models. Wherever possible, the course will make connections to recent literature to familiarize students with the state-of-the-art and provide exposure to open questions. Topics include kinetic theory, thermal physics, electron transport, Boltzmann transport equation, thermoelectricity, nanoscale thermometry etc., and applications of these concepts to devices.
- MAE 573/ENE 539: Applied Optimization for Energy Systems EngineeringIn this course students learn practical applications of optimization methods in energy systems engineering. Students also gain familiarity with techniques via survey of canonical problems in power systems operations and planning. The course teaches practical model development, including formulation and implementation of linear and mixed integer programs in an algebraic programming language. The second half surveys advanced topics, including: managing dimensionality in large-scale problems, technology evaluation, policy evaluation, decision making under uncertainty, and multi-objective optimization.
- MAE 574: Unmaking the Bomb:The Science &Technology of Nuclear Nonproliferation, Disarmament, and VerificationNuclear weapons have re-emerged as one of the main global security challenges of our time. Reducing the dangers posed by these weapons requirse new verification technologies, and this course covers the relevant science and technology to understand and support such efforts. In the first half of the semester, we examine the fundamental principles of nuclear fission, nuclear radiation, and radiation detection. As part of hands-on final projects in the second half of the semester, teams of students prototype and benchmark inspection systems and test them during a joint verification exercise.
- MAE 577: Multi-Robot Systems: Body-Brain-ColonyMost applications of robotics envision many robots cooperating together to achieve similar benefits, whether it be warehouses, or environmental monitoring, or construction, or future space exploration. In this seminar-research style class, we study the hardware, software, and communication design of multi-robot systems.
- MAE 595: Extramural Research ProjectA research project designed in conjunction with the student's advisor and an industrial, NGO, or government sponsor that provides practical experience relevant to the student's thesis topic. The full- time research project is conducted at the host institution. A final paper is required. Enrollment is limited to post-Generals students and requires the support of both the student's advisor and the Director of Graduate Studies. The course does not count toward the post-Generals course requirement.
- MAE 597: Graduate Seminar in Mechanical and Aerospace EngineeringA seminar of internal and external speakers on a diverse range of topics relevant to Mechanical and Aerospace Engineering including Applied Physics; Biomechanics and Biomaterials; Control, Robotics, and Dynamical Systems; Fluid Mechanics; Materials Science; and Propulsion and Energy Sciences. There is one seminar per week on Friday and a subsequent discussion on Monday. All first-year PhD students are required to participate.
- MSE 501/MAE 561/CEE 561/CBE 514: Introduction to MaterialsEmphasizes the connection between microstructure and properties in solid-state materials. Topics include crystallinity and defects, electronic and mechanical properties of materials, phase diagrams and transformations, and materials characterization techniques. Ties fundamental concepts in materials science to practical use cases with the goal of solving complex challenges in sustainability and healthcare, among others.