Materials Science and Engr
- CBE 225/MSE 225/STC 225/ENV 225: Plastics, Profit, and People: How Science & Society Can Strive for SustainabilityFrom the ubiquitous water bottle to food packaging to Barbie, we live in a plastic world. While plastics provide benefits from safe food delivery to sterile healthcare products, only a small percentage is recycled. This course addresses the historical development of plastics and their impacts. We'll discuss the science of plastics and their lifecycle from sourcing through manufacturing, use, and end-of-life. Topics will include microplastics, plastics in the ocean, and the impacts of additives (e.g. BPA). Finally, we'll examine solutions including recycling and bio-based plastics from scientific, behavioral, and economic perspectives.
- CBE 415/CHM 415/MSE 425: PolymersBroad introduction to polymer science and technology, including polymer chemistry (major synthetic routes to polymers), polymer physics (solution and melt behavior, solid-state morphology and properties), and polymer engineering (overview of reaction engineering, melt processing, and recycling methods).
- CBE 422/MSE 422/BNG 422: Molecular Modeling MethodsThis course offers an introduction to computational chemistry and molecular simulation, which are essential components to modern-day science and engineering, as they can provide both mechanistic insights underlying observed phenomena and predictions on thermodynamic/kinetic properties. Through pedagogical treatment of essential background, basic algorithmic implementation, and applications, students will develop knowledge necessary to follow, appreciate, and devise computational 'experiments'. Topics of emphasis include quantum chemical solution methods, Monte Carlo & molecular dynamics, and free energy/enhanced sampling.
- CBE 503/MSE 521: Advanced ThermodynamicsThis course provides an graduate-level introduction to thermodynamics and statistical mechanics relevant to problems in biological, chemical, and materials science and engineering. Topics include: thermodynamic laws and transformations; microstates, macrostates, partition functions, and statistical ensembles; equilibrium, stability, and response of multicomponent systems; phase transitions; fluctuations; structure of classical fluids; viral expansion; computer simulation methods. Applications include polymer elasticity and phase separation, electrolytes, colloidal suspensions, protein folding, surface adsorption, crystal melting, magnets.
- CEE 345/STC 345/MSE 345/MAE 327: Origami EngineeringThis class acquaints the student with the state-of-art concepts and algorithms to design and analyze origami systems (assemblies, structures, tessellations, etc). Students will learn how to understand, create and transform geometries by folding and unfolding concepts, and thus apply origami concepts to solve engineering and societal problems. In addition, using origami as a tool, we will outreach to some fundamental concepts in differential geometry.
- CEE 361/MAE 325/MSE 331: Matrix Structural Analysis and Introduction to Finite-Element MethodsThis course presents the Matrix Structural Analysis (MSA) and Finite Element Methods (FEM) in a cohesive framework. The first half of the semester is devoted to MSA topics: derivation of truss, beam, and frame elements; assembly and partitioning of the global stiffness matrix; and equivalent nodal loads. The second half covers the following FEM topics: strong and weak forms of boundary value problems including steady-state heat conduction, and linear elasticity, Galerkin approximations, constant strain triangles, and isoparametric quads. Other topics such as dynamic analysis will also be discussed. MATLAB is used for computer assignments.
- CEE 545/MAE 556/MSE 535: Origami EngineeringThis class acquaints the student with the state-of-art concepts and algorithms to design and analyze origami systems (assemblies, structures, tessellations, etc). Students learn how to understand, create and transform geometries by folding and unfolding concepts, and thus apply origami concepts to solve engineering and societal problems. In addition, using origami as a tool, we outreach to some fundamental concepts in differential geometry.
- CHM 503/CBE 524/MSE 514: Introduction to Statistical MechanicsPrediction of the structure and properties of equilibrium and nonequilibrium states of matter. Topics include Gibbs ensembles; microscopic basis of thermodynamics; Boltzmann statistics; ideal gases; Fermi-Dirac and Bose-Einstein statistics; models of solids; blackbody radiation; Bose condensation; conduction in metals; virial expansion; distribution functions; liquids; structural glasses; sphere packings and jamming; computer simulation techniques; critical phenomena; percolation theory; Ising model; renormalization group methods; irreversible processes; Brownian motion; Fokker-Planck and Boltzmann equations.
- CHM 522/MSE 592: Advanced Inorganic ChemistryA detailed examination of bonding and structure in transition metal complexes and crystalline solid materials are undertaken. Group Theory is introduced on an advanced level. A variety of modern physical methods are discussed in this context. Chemical reactivity, including ligand substitution reactions, charge transfer reactions and photochemical processes, are investigated based on electronic structure considerations. Basic physical properties of solid materials are discussed in context to their electronic structure. Examples are drawn from the current literature.
- ECE 554/MSE 553: Nonlinear OpticsA general introduction to nonlinear optics, including harmonic generation, parametric amplification and oscillation, electro-optic effects, photorefractive materials, nonlinear spectroscopy, and nonlinear imaging.
- ECE 560/PHY 565/MSE 556: Fundamentals of NanophotonicsIntroduction to theoretical techniques for understanding and modeling nanophotonic systems, emphasizing important algebraic properties of Maxwell's equations. Topics covered include Hermitian eigensystems, photonic crystals, Bloch's theorem, symmetry, band gaps, omnidirectional reflection, localization and mode confinement of guided and leaky modes. Techniques covered include Green's functions, density of states, numerical eigensolvers, finite-difference and boundary-element methods, coupled-mode theory, scattering formalism, and perturbation theory.
- ENE 267/MSE 287/CEE 267: Materials for Energy Technologies and EfficiencyAn introductory course focused on the new and existing materials that are crucial for mitigating worldwide anthropogenic CO2 emissions and associated greenhouse gases. Emphasis will be placed on how materials science is used in energy technologies and energy efficiency; including solar power, cements and natural materials, sustainable buildings, batteries, water filtration, and wind and ocean energy. Topics include: atomic structure and bonding; semiconductors; inorganic oxides; nanomaterials; porous materials; conductive materials; membranes; composites; energy conversion processes; life-cycle analysis; material degradation.
- GEO 421/MSE 421: A Practical Guide to Atomistic ModelingThis course covers atomistic modeling fundamentals and the applications to the study of material properties. Topics include intro to clusters, quantum mechanics basics, Hartree-Fock, density function theory, molecular dynamics, and machine learning potential. Each topic contains both theory and hands-on software tutorials of deriving material properties using available softwares (e.g., VASP, PySCF, LAMMPS, DeePMD-kit). Students gain experience applying atomistic modeling to their individual areas of research interest. Individual projects are developed by students throughout the semester.
- MAE 324/MSE 324: Structure and Properties of MaterialsRelates to the structures, properties, processing and performance of different materials including metals, alloys, polymers, ceramics, and semiconductors. This course satisfies the MAE departmental requirement in materials as well as the MSE certificate core requirement.
- MSE 302: Laboratory Techniques in Materials Science and EngineeringA hands-on introduction to the use of laboratory techniques for the processing and characterization in materials science. Structure-property relations will be explored through experiments in mechanical, optical, biological and electronic properties. The underlying theories and lab techniques will be explained in weekly lectures. The goal of the course is for students to develop a solid understanding of material properties and the common techniques used in research, as well as to gain valuable practice in oral and written presentation.
- MSE 501/MAE 561/CEE 561/CBE 514: Introduction to MaterialsEmphasizes the connection between microstructure and properties in solid-state materials. Topics include crystallinity and defects, electronic and mechanical properties of materials, phase diagrams and transformations, and materials characterization techniques. Ties fundamental concepts in materials science to practical use cases with the goal of solving complex challenges in sustainability and healthcare, among others.
- MSE 503: Solid State MaterialsThis course provides the basic tools to understand solid materials and their mechanical as well as physical properties. The first half of the course focuses on the atomic structure of crystalline materials and how to measure those structures using x-ray, neutron and electron diffraction. We discuss defects in crystalline materials and how they impact the materials properties. The second half of the course focuses on physical properties of solids. A short introduction into Band theory builds up our understanding of electron conductivity and magnetism. Finally, we discuss polymers and amorphous solids.
- MSE 518/CHM 518: Fundamentals of Quantum Materials and Their ApplicationsExploring the intersection of chemistry, physics, and engineering, this course delves into the fundamentals of quantum materials and their pivotal role in advancing technologies, particularly quantum computing. Emphasizing interdisciplinarity, it equips students with the knowledge to tackle future challenges in materials science and engineering. Covering key concepts, techniques, and applications of quantum materials, the course addresses critical questions and topics within this emerging field. Special focus is given to the various synthesis methods, characterization techniques, and potential of these materials in technological innovations.