Physics
- AST 206/PHY 206: Black HolesBlack holes are amazing: so much mass is contained in such a small region of space that nothing, not even light, can escape. In this class, we will learn to understand what black holes are, and (equally importantly) what they are not (sorry, science fiction!). We will grapple with the seeming simplicity of black holes and their weirdness. We will also study how black holes are discovered and how they give rise to some of the most astonishing phenomena in the Universe. We will cover concepts at the forefront of modern astronomy and physics and highlight the power of quantitative thinking (algebra only) and the scientific method.
- AST 309/MAE 309/PHY 309/ENE 309: The Science of Fission and Fusion EnergyPower from the nucleus offers a low-carbon source of electricity. However, fission power presents risks: nuclear proliferation, accidents, attacks (c.f. Ukraine), and waste disposal. On the other hand, new designs promise improved safety and/or smaller unit sizes. Fusion carries less risk and R&D is making exciting progress. Furthermore, private companies are now promising to commercialize fusion in the 2030's. We will delve into the scientific underpinnings of these two energy sources, strengthening your physical insight and mathematical and computational skills, and giving you the tools to assess these issues for yourselves.
- AST 403/PHY 402: Stars and Star FormationStars form from interstellar gas, and eventually return material to the interstellar medium (ISM). Nuclear fusion powers stars, and is also the main energy source in the ISM. This course discusses the structure and evolution of the ISM and of stars. Topics include: physical properties and methods for studying ionized, atomic, and molecular gas in the ISM; dynamics of magnetized gas flows and turbulence; gravitational collapse and star formation; the structure of stellar interiors; production of energy by nucleosynthesis; stellar evolution and end states; the effects of stars on the interstellar environment.
- ECE 456/PHY 456: Quantum OpticsSemiclassical field theory of light-matter interactions (Maxwell-Bloch equations). Quantum theory of light, vacuum fluctuations and photons. Quantum states and coherence properties of the EM field, photon counting and interferometry. Quantum theory of light-matter interactions, Jaynes-Cummigns (JC) model. Physical realizations of JC model, case study:circuit QED. Quantum theory of damping. Resonance fluorescence. Coupled quantum non-linear systems: Lattice CQED, Superradiance
- ECE 569/PHY 568: Quantum Information and EntanglementQuantum information theory is a set of ideas and techniques that were developed in the context of quantum computation but now guide our thinking about a range of topics from black holes to semiconductors. This course introduces the central ideas of quantum information theory and surveys their applications. Topics include: quantum channels and open quantum systems; quantum circuits and tensor networks; a brief introduction to quantum algorithms; quantum error correction; and applications to sensing, many-body physics, black holes, etc.
- ISC 233/CHM 233/COS 233/MOL 233/PHY 233: An Integrated, Quantitative Introduction to the Natural Sciences IIAn integrated, mathematically and computationally sophisticated introduction to physics and chemistry, drawing on examples from biological systems. This year long, four course sequence is a multidisciplinary course taught across multiple departments with the following faculty: G. Scholes (CHM), T. Gregor, J. Shaevitz (PHY); Britt Adamson, John Storey, M. Wuhr (MOL); J. Gadd-Reum, H. McNamara, S. Ryabichko, B. Zhang (LSI). Five hours of lecture, one three-hour experimental lab, one three-hour computational lab.
- ISC 234/CHM 234/COS 234/MOL 234/PHY 234: An Integrated, Quantitative Introduction to the Natural Sciences IIAn integrated, mathematically and computationally sophisticated introduction to physics and chemistry, drawing on examples from biological systems. This year long, four course sequence is a multidisciplinary course taught across multiple departments with the following faculty: G. Scholes (CHM), T. Gregor, J. Shaevitz (PHY); Britt Adamson, John Storey, M. Wuhr (MOL); J. Gadd-Reum, H. McNamara, S. Ryabichko, B. Zhang (LSI). Five hours of lecture, one three-hour experimental lab, one three-hour computational lab.
- MSE 504/CHM 560/PHY 512/CBE 520: Monte Carlo and Molecular Dynamics Simulation in Statistical Physics & Materials ScienceThis course examines methods for simulating matter at the atomistic scale with emphasis on the concepts that underline modern computational methodologies for classical many-body systems at or near statistical equilibrium. The course covers Monte Carlo and Molecular Dynamics (from basics to advanced techniques), and includes an introduction to ab-initio Molecular Dynamics and the use of Machine Learning techniques in molecular simulations.
- PHY 102: Introductory Physics IIThis course presents an introduction to the fundamental laws of nature, especially optics, electricity/magnetism, nuclear and atomic theory. These are treated quantitatively with an emphasis on problem solving. The laboratory is intended to give students an opportunity to observe physical phenomena and to gain "hands-on" experience with apparatus and instruments.
- PHY 104: General Physics IIThis calculus-based course is primarily geared to students majoring in engineering and physics, but is also well suited to majors in other sciences. The goal of the course is to develop an understanding of the fundamental laws of physics, in particular, electricity and magnetism, with applications to electronics and optics.
- PHY 106: Advanced Physics (Electromagnetism)This course features the classical theory of electricity and magnetism, with emphasis on the unification of these forces through the special theory of relativity. While the subject matter is similar to that of PHY 104, the treatment is more sophisticated. The topics also include DC and AC circuits and the electromagnetic behavior of matter.
- PHY 108: Physics for the Life SciencesPHY108 is designed to introduce physics and its applications to students interested in the life sciences. The course is broadly organized around 4 major concepts: Optics, Radiation & Electromagnetism, Fluids and Oscillators. Specific topics are chosen to be directly relevant to modern life science research and techniques. Classes are carried out in a lab-like setting and include hands-on demos to introduce material. The laboratory experience emphasizes exposure to physical concepts related to the life sciences. Weekly help sessions will be offered throughout the semester.
- PHY 109: Physics Methods and ApplicationsPHY 109 will focus on physics concepts, methodologies, and problem solving techniques, with a selection of topics drawn from the PHY 103 and 104 curriculum. PHY 109 has no lab component. The goal of the course is a mastery of mechanics (PHY 103), together with the related mathematical tools, and a first exposure to concepts from electricity and magnetism (PHY 104). This is the first course in a two-course sequence, concluding with PHY 110 in the summer term.
- PHY 208: Principles of Quantum MechanicsThis is the Physics Department's introductory quantum mechanics course. Its intent is to present the subject in a fashion that will allow both mastery of its conceptual basis and techniques and appreciation of the excitement inherent in looking at the world in a profoundly new way. Topics to be covered include: state functions and the probability interpretation, the Schroedinger equation, uncertainty principle, the eigenvalue problem, angular momentum, perturbation theory, and the hydrogen atom.
- PHY 210: Experimental Physics SeminarThis seminar introduces fundamental techniques of electronics and instrumentation. The course consists of weekly hands-on labs that introduce the students to the fascinating world of electronics. We begin with learning how to build circuits and probe their behavior and then explore what can be done to create instrumentation and make measurements. No prerequisites.
- PHY 220: Physics of EnergyWe will cover the physical principles behind the production, availability, usage, and storage of energy for society. We will explore sources such as fission, fusion, solar, geothermal, hydro, wind, and fossil fuels in the context of simple physical models of the earth and its atmosphere. Our study will draw on many aspects of physics-- classical mechanics, thermodynamics, statistical physics, particle physics, electromagnetism, quantum mechanics, fluids which will be developed as needed at an introductory level throughout the course.
- PHY 235: Introduction to Research in PhysicsThis course will develop skills necessary to be successful in scientific research, such as programming, data analysis, and scientific writing and communication. In-class activities will apply these skills to research questions about dark matter - what is its true nature and how can we discover it? Students will be introduced to a broad range of topics in cosmology and particle physics, and build proficiency with scientific computing in Python as well as machine learning methods. Guidance will be provided in identifying summer research opportunities and funding support.
- PHY 304: Advanced ElectromagnetismElectromagnetic theory based on Maxwell's equations. Electrostatics, including boundary valve problems, dielectrics, and energy considerations leading to the Maxwell stress tensor. Magnetostatics and simple magnetic materials. Electromagnetic waves, retarded potentials and radiation. Familiarity with vector calculus is assumed.
- PHY 312: Experimental PhysicsThis is an advanced course in experimental physics, including four experiments and an electronics lab. Examples of experiments include muon decay, beta decay, optical pumping, the Mossbauer effect, holography, positron annihilation, electron diffraction, single photon interference, NMR, the Josephson effect, pulsar measurements, and the observation of Galactic hydrogen. Weekly lectures will provide an overview of various experimental techniques and data analysis.
- PHY 502: Communicating Physics (Half-Term)Becoming an effective communicator requires time and practice refining a number of skills. This course focuses on the subset of skills most helpful to students during their time in graduate school. The primary goals of the course are: learn to create a fair and inclusive environment; learn research-proven teaching methods; practice communicating in a number of settings; and more generally gain insights into how to become a more effective communicator.
- PHY 506/MSE 576: Advanced Quantum MechanicsThis is a one-semester course in advanced quantum mechanics, and counts as a "core course" in the physics graduate program. The emphasis is on topics relevant to quantum information, quantum computation, entanglement, and many-body quantum dynamics.
- PHY 510: Advanced Quantum Field TheoryRelations between Quantum Field Theory and Statistical Mechanics, Renormalization Group, Non-Abelian Gauge Theories, Asymptotic Freedom, Quantum Chromodynamics, Chiral Lagrangians.
- PHY 521/MAT 597: Introduction to Mathematical PhysicsAn introduction to the statistical mechanic of classical and quantum spin systems. Among the topics to be discussed are phase transitions, emergent structures, critical phenomena, and scaling limits. The goal is to present the physics embodied in the subject along with mathematical methods, from probability and analysis, for rigorous results concerning the phenomena displayed by, and within, the subject's essential models.
- PHY 529: High-Energy PhysicsAn overview of modern elementary particle physics and the Standard Model. Specific topics include: detector physics, QED, EWK physics, CP violation, Higgs physics, and neutrino physics, with an emphasis on areas of current interest.
- PHY 536/MSE 577: Advanced Condensed Matter Physics IICourse introduces and presents ongoing theoretical investigations of new research topics in condensed matter physics: topological insulators and Chern numbers, topological superconductors, the fractional quantum Hall effect and non-abelian statistics, flat-band systems, spin liquids. The techniques needed to deal with such systems, such as Chern numbers, topological band theory, Berry phases, conformal field theory, Chern-Simons theory, t-J models, Gutzwiller wavefunctions, Hubbard models, are explained.
- PHY 540: Selected Topics in Theoretical High-Energy Physics: Strings, Black Holes and Gauge TheoriesDiscussion of the old and new methods of quantum field theory with applications to statistical mechanics, turbulence, black holes, dS-space.
- PHY 562: BiophysicsThe living world presents many beautiful phenomena that challenge our understanding of physics. We survey these phenomena, on all scales from single molecules to groups of organisms, discuss experimental progress in "taming" the complexity of these systems, and explore the opportunities for theory. We address explicitly how simplicity can emerge from the underlying complexity and try out physical principles that are special to life.
- PHY 563: Physics of the Universe: Origin & EvolutionThe course is the first of a two-semester survey (along with PHY 564) of fundamental concepts which underly contemporary cosmology. The first semester focuses on the nearly homogeneous evolution of the universe including the standard big bang picture, inflationary cosmology, dark matter, and the possibility of present-day accelerated expansion. The second semester focuses on the late stages in the evolution of the universe, when gravity results in the growth of large-scale structure, perturbations in the cosmic microwave background, gravitational lensing and other non-linear phenomena.