Theoretical Machine Learning
COS 511
1232
1232
Info tab content
Can the mechanism of learning be automated and implemented by a machine? In this course we formally define and study various models that have been proposed for learning. The course presents and contrasts the statistical, computational and game-theoretic models for learning. Likely topics: intro to statistical learning theory and generalization; learning in adversarial settings on-line learning; analysis of convex and nonconvex optimization algorithms, using convex optimization to model and solve learning problems; learning with partial observability; boosting; reinforcement learning and control; introduction to theory of deep learning.
Instructors tab content
Sections tab content
Section L01
- Type: Lecture
- Section: L01
- Status: O
- Enrollment: 29
- Capacity: 70
- Class Number: 23149
- Schedule: TTh 11:00 AM-12:20 PM - Engineering Quad A-Wing A224