Astrophysical Sciences
- APC 524/MAE 506/AST 506/CSE 524: Software Engineering for Scientific ComputingThe goal of this course is to teach basic tools and principles of writing good code, in the context of scientific computing. Specific topics include an overview of relevant compiled and interpreted languages, build tools and source managers, design patterns, design of interfaces, debugging and testing, profiling and improving performance, portability, and an introduction to parallel computing in both shared memory and distributed memory environments. The focus is on writing code that is easy to maintain and share with others. Students develop these skills through a series of programming assignments and a group project.
- APC 588/AST 588/GEO 588/PHY 588: A Geometrical Introduction to Tensor CalculusTensor calculus is a language used to describe physical phenomena in fluid dynamics, continuum mechanics, electromagnetism, and general relativity. The course explores the mathematical background for geometrical descriptions of tensors and their calculus. Students need to be familiar with multivariate calculus and partial differential equations.
- AST 205: Planets in the UniverseThis is an introductory course in astronomy focusing on planets in our Solar System, and around other stars (exoplanets). First we review the formation, evolution and properties of the Solar system. Following an introduction to stars, we then discuss the exciting new field of exoplanets; discovery methods, earth-like planets, and extraterrestrial life. Core values of the course are quantitative analysis and hands-on experience, including telescopic observations. This SEN course is designed for the non-science major and has no prerequisites past high school algebra and geometry. See www.astro.princeton.edu/planets for important changes
- AST 250: Space Physics Laboratory IThe Space Physics Laboratory course sequence provides undergraduates at all levels the opportunity to participate in a laboratory developing NASA space flight instrumentation. The courses teach space physics laboratory skills, including ultrahigh vacuum, space instrument cleanroom, mechanical, electrical, and other laboratory skills, which then allow students to propose and carry out a significant group research project in the Laboratory. AST 250 is the prerequisite for AST 251, but both courses carry credit.
- AST 255/CHM 255/GEO 255: Life in the UniverseThis course introduces students to a new field, Astrobiology, where scientists trained in biology, chemistry, astrophysics and geology combine their skills to investigate life's origins and to seek extraterrestrial life. Topics include: the origin of life on earth,the prospects of life on Mars, Europa, Titan, Enceladues and extra-solar planets, as well as the cosmological setting for life and the prospects for SETI. 255 is the core course for the planets and life certificate.
- AST 301/PHY 321: General RelativityAn introduction to general relativity and its astrophysical applications, including black holes, cosmological expansion, and gravitational waves.
- AST 498: Senior Thesis I (Year-Long)The senior thesis (498-499) is a year-long project in which students complete a substantial piece of research and scholarship under the supervision and advisement of a Princeton faculty member. While a year-long thesis is due in the student's final semester of study, the work requires sustained investment and attention throughout the academic year. Required works-in-progress submissions, their due dates, as well as how students' grades for the semester are calculated are outlined below.
- AST 521: Introduction to Plasma AstrophysicsIntroductory course on plasma physics, as it applies to space and astrophysical systems. Fundamental concepts are developed with mathematical rigor, and applications to the physics of a wide variety of astrophysical systems are made. Topics include charged particle motion, magnetohydrodynamics, kinetic theory, waves, instabilities, and turbulence. Applications to the physics of the solar wind and corona, the intracluster medium of galaxy clusters, the interstellar medium (including cosmic rays) of galaxies, protostellar cores, and a wide variety of accretion flows are given.
- AST 522: Extragalactic AstronomyThis course is an overview of cosmology and extragalactic astronomy at the graduate level, with an emphasis on the connection between theoretical ideas and observational data. The Big Bang model and the standard cosmological model are emphasized, as well as the properties and evolution of galaxies, quasars, and the intergalactic medium.
- AST 541: Seminar in Theoretical AstrophysicsDesigned to stimulate students in the pursuit of research. Participants in this seminar discuss critically papers given by seminar members. Ordinarily, several staff members also participate. Often topics are drawn from published data that present unsolved puzzles of interpretation.
- AST 551/MAE 525: General Plasma Physics IAn introductory course to plasma physics, with sample applications in fusion, space and astrophysics, semiconductor etching, microwave generation, plasma propulsion, high power laser propagation in plasma; characterization of the plasma state, Debye shielding, plasma and cyclotron frequencies, collision rates and mean-free paths, atomic processes, adiabatic invariance, orbit theory, magnetic confinement of single-charged particles, two-fluid description, magnetohydrodynamic waves and instabilities, heat flow, diffusion, kinetic description, and Landau damping. The course may be taken by undergraduates with permission of the instructor.
- AST 553: Plasma Waves and InstabilitiesHydrodynamic and kinetic models of nonmagnetized and magnetized plasma dispersion; basic plasma waves and their applications; basic instabilities; mechanisms of collisionless dissipation; geometrical-optics approximation; conservation laws and transport equations for the wave action, energy, and momentum; mode conversion; quasilinear theory.
- AST 557/APC 503: Analytical Techniques in Differential EquationsAsymptotic methods, Dominant balance, ODEs: initial and Boundary value problems, Wronskian, Green's functions, Complex Variables: Cauchy's theorem, Taylor and Laurent expansions, Approximate Solution of Differential Equations, singularity type, Series expansions. Asymptotic Expansions. Stationary Phase, Saddle Points, Stokes phenomena. WKB Theory: Stokes constants, Airy function, Derivation of Heading's rules, bound states, barrier transmission. Asymptotic evaluation of integrals, Laplace's method, Stirling approximation, Integral representations, Gamma function, Riemann zeta function. Boundary Layer problems, Multiple Scale Analysis
- AST 558: Seminar in Plasma PhysicsAdvances in experimental and theoretical studies or laboratory and naturally-occurring high-termperature plasmas, including stability and transport, nonlinear dynamics and turbulence, magnetic reconnection, selfheating of "burning" plasmas, and innovative concepts for advanced fusion systems. Advances in plasma applications, including laser-plasma interactions, nonneutral plasmas, high-intensity accelerators, plasma propulsion, plasma processing, and coherent electromagnetic wave generation.
- AST 568: Neoclassical and Gyrokinetic Theories of Magnetically Confined PlasmasTheoretical tools for describing the dynamics of magnetically confined plasmas are introduced. The first part of the course provides a systematic derivation and physical discussion of neoclassical theory, which describes the effect of collisions and magnetic-field geometry on the density, flow, temperature, and electric field in tokamaks and stellarators. Topics include neoclassical particle and energy fluxes, bootstrap current, and poloidal flow damping. The second part focuses on gyrokinetics, a theoretical framework used to describe low-frequency plasma dynamics, with an emphasis on geometric methods for describing guiding-center dynamics.