Mech and Aerospace Engr
- APC 523/AST 523/MAE 507: Numerical Algorithms for Scientific ComputingA broad introduction to numerical algorithms used in scientific computing. The course begins with a review of the basic principles of numerical analysis, including sources of error, stability, and convergence. The theory and implementation of techniques for linear and nonlinear systems of equations and ordinary and partial differential equations are covered in detail. Examples of the application of these methods to problems in engineering and the sciences permeate the course material. Issues related to the implementation of efficient algorithms on modern high-performance computing systems are discussed.
- CEE 312/MAE 312: Statics of StructuresDevelops notions of internal forces and displacements, and instructs students how to design and analyze structures. Presents the fundamental principles of structural analysis, determination of internal forces, and deflections under the static load conditions, and introduces the bending theory of plane beams and the basic energy theorems. The theory of the first order will be developed for continuous girders, frames, arches, suspension bridges, and trusses, including both statically determinate and indeterminate structures. Basic principles for construction of influence lines and determination of extreme influences will be presented.
- CEE 361/MAE 325/MSE 331: Matrix Structural Analysis and Introduction to Finite-Element MethodsThis course presents the Matrix Structural Analysis (MSA) and Finite Element Methods (FEM) in a cohesive framework. The first half of the semester is devoted to MSA topics: derivation of truss, beam and frame elements; assembly and partitioning of the global stiffness matrix; and equivalent nodal loads. The second half covers the following FEM topics: strong and weak forms of boundary value problems including steady-state heat conduction, and linear elasticity, Galerkin approximations, constant strain triangle, isoparametric quads. Modern topics, such as polygonal elements, will be introduced. MATLAB is used for computer assignments.
- ECE 346/COS 348/MAE 346: Intelligent Robotic SystemsRobotic systems are quickly becoming more capable and adaptable, entering new domains from transportation to healthcare. To operate in dynamic environments, interact with other agents, and accomplish complex tasks, these systems require sophisticated decision-making. This course delves into the core concepts and techniques underpinning modern autonomous robots, including planning under uncertainty, active perception, learning-based control, and multiagent decision-making. Lectures cover the theoretical foundations and the practical component introduces the Robot Operating System (ROS) framework through hands-on assignments with mobile robots.
- ECE 455/CEE 455/MAE 455/MSE 455: Optical and Photonic Systems for Environmental SensingThis class will teach you about optical and photonic sensing technologies and their applications to environmental monitoring. The course will contain elements of atmospheric science and Earth observation, fundamentals of optics, photonics and laser physics, as well as a survey of modern optical and spectroscopic sensing applications. In this course students will be asked to prepare two oral presentations and there will be three laboratory assignments focused on fundamentals of optical sensing
- ENE 422/MAE 422: Introduction to the Electricity Sector-Engineering, Economics, and RegulationThis course provides an introduction to the electricity sector drawing on engineering, economics, and regulatory policy perspectives. It introduces the engineering principles behind various power generation technologies and transmission and distribution networks; the economics of electricity markets; and the regulation of electricity generation, transmission, distribution, and retail sales. Open challenges related to the growth of distributed energy resources, the transition to low-carbon electricity sources, and the role of the electricity sector in mitigating global climate change are also discussed.
- ENE 522/MAE 533: Introduction to the Electricity Sector-Engineering, Economics, and RegulationThis course provides an introduction to the electricity sector drawing on engineering, economics, and regulatory policy perspectives. It introduces the engineering principles behind various power generation technologies and transmission and distribution networks; the economics of electricity markets; and the regulation of electricity generation, transmission, distribution, and retail sales. Open challenges related to the growth of distributed energy resources, the transition to low-carbon electricity sources, and the role of the electricity sector in mitigating global climate change are also discussed.
- ENE 570/CBE 570/MAE 570: Advanced Optimization Methods for Energy Systems EngineeringThe course covers (1) basic theory, (2) modeling techniques, (3) basic algorithms and solution methods, and (4) software tools for optimization. We also discuss how optimization methods can be used to design, analyze, and operate energy systems.
- GEO 376/ENV 375/CEE 379/MAE 376: The Physics of GlaciersGlaciers and ice sheets are important elements of Earth's global climate system. This course introduces undergraduate and graduate students to the history of ice on Earth, contemporary glaciology, and the interactions between climate, glaciers, landforms, and sea level. Drawing from basic physical concepts, lab experiments, numerical modeling, and geological observations, we tackle important physical processes in glaciology, and equip students with data analysis and modeling skills. Students will gain an appreciation for the importance of ice sheets for the global climate system, and the large gaps that remain in our understanding.
- MAE 206: Introduction to Engineering DynamicsFormulation and solution of equations governing the dynamic behavior of engineering systems. Fundamental principles of Newtonian mechanics. Two and three dimensional kinematics and kinetics of particles and rigid bodies. Motion relative to moving reference frames. Impulse-momentum and work-energy relations. Free and forced vibrations of mechanical systems. Introduction to dynamic analysis of mechanical devices and systems.
- MAE 222/CEE 208: Mechanics of FluidsIntroduction to the physical and analytical description of phenomena associated with the flow of fluids. Topics include the principles of conservation of mass, momentum and energy; lift and drag; open channel flow; dynamic similitude; laminar and turbulent flow.
- MAE 224: Integrated Engineering Science LaboratoryStudents will conduct a series of prepared experiments throughout the year that will culminate in an independent project of the students' design involving fluid mechanics, thermodynamics and data acquisition tools. Concepts learned will be applied in subsequent labs involving expanding flows and lift and drag measurements. Experiments will include internal and external flows.
- MAE 226: Mechanical and Aerospace Engineering Methods and SkillsIntroductory lecture and laboratory course for current or prospective Mechanical and Aerospace Engineering students that focus on methods and skills. For AY 2021-22, the course explores introductory electronics principles and practical applications typically encountered in MAE laboratories and projects. Lectures will provide a basic exposure to electronic concepts and applications. In addition to problem sets, lab reports and a midterm paper, students will demonstrate their mastery by completing a final independent project. This elective course does not count towards the degree requirements in MAE (PDF only)
- MAE 228/EGR 228/CBE 228/ENE 228: Energy Technologies in the 21st CenturyThis course will deal with issues of regional and global energy demands, sources, carriers, storage, current and future technologies and costs for energy conversion, and their impact on climate and the environment. Students will learn to perform objective cost-efficiency and environmental impact analyses from source to end-user on both fossil fuels (oil, coal, and natural gas), and alternative energy sources (bio-fuels, solar energy, wind, batteries, and nuclear). We will also pay particular attention to energy sources, technologies, emissions, and regulations for transportation. The course will also include tours to energy research labs.
- MAE 305/MAT 391/EGR 305/CBE 305: Mathematics in Engineering IA treatment of the theory and applications of ordinary differential equations with an introduction to partial differential equations. The objective is to provide the student with an ability to solve problems in this field.
- MAE 306/MAT 392: Mathematics in Engineering IIThis course covers a range of fundamental mathematical techniques and methods that can be employed to solve problems in contemporary engineering and the applied sciences. Topics include algebraic equations, numerical integration, analytical and numerical solution of ordinary and partial differential equations, harmonic functions and conformal maps, and time-series data. The course synthesizes descriptive observations, mathematical theories, numerical methods, and engineering consequences.
- MAE 321: Engineering DesignThis course introduces the technical foundation and basic processes of Mechanical Design, which are appropriate for the design of both mechanical systems, and components. The emphasis is on designing for the complete product life-cycle. Topics in parametric design and design optimization using Finite Element Analysis (FEA), Computer Aided Design (CAD), and Manufacturing (CAM) are introduced in the classroom and online and then reinforced by team and individual assignments.
- MAE 323: Aerospace StructuresThe course presents contemporary methods of mechanical and structural analysis used in Aerospace. Foundational topics covered include: equations of linear elasticity, virtual work and energy formulations, basic concepts of structural stability and vibration. An introduction to Finite Element Analysis is also presented and the students will gain familiarity with commercial Finite Element application software in the context of aerospace structures.
- MAE 328/EGR 328/ENV 328/ENE 328: Energy for a Greenhouse-Constrained WorldThis course provides an overview of fundamental physical mechanisms behind sustainable energy technologies, including solar thermal, solar photovoltaic, wind, nuclear, and hydroelectricity. Physics of the greenhouse effect, projected Earth's climate changes, as well as socio-economic impacts on energy uses and greenhouse-gas emissions are reviewed. Variability, dispatchability, and areal power density of energy resources are discussed. Energy efficiency, energy storage, as well as transmission and distribution of electric power are touched upon.
- MAE 340: Junior Independent WorkIndependent work is a one term project. Student selects subject and advisor - defines problem to be studied and proposes work plan. A list of possible subjects of particular interest to faculty and staff members is provided. Written report and poster session due at end of semester to faculty, staff, fellow students and guests. 339 Fall Term project; 340 Spring Term project.
- MAE 340D: Junior Independent Work with DesignOne semester independent work project similar to MAE 339-340. Principle difference is that the project must incorporate aspects and principles of design for a system, product, vehicle, device, apparatus, or other design element. Written report and poster session at end of semester to faculty, staff, fellow students and guests. 339D Fall Term project; 340D Spring Term project.
- MAE 342: Space System DesignThis course studies the design of modern spacecraft and complex space missions. The principles and design aspects of key subsystems: structural, thermal, power, propulsion, attitude determination and control, etc., as well as systems engineering and design concepts will be covered. Parallel to the study of space systems, students will work in teams to design a space system to achieve a given mission objective, with their work demonstrated through design reviews and reports
- MAE 412: Microprocessors for Measurement and ControlIntroduction to microcomputers for measurement and control. This is a hardware course in the area of electro mechanical systems. Students build microcomputer controllers and apply them to the automation of various aspects of a model railroad. Students work in pairs on a term project. Projects involve mechanical design of mechanisms and structures, design of electronic circuits for sensing and control, and design of an 8-bit microcomputer that is integrated into a serial data network.
- MAE 416/EEB 416: Bioinspired DesignThe bioinspired design course offers interdisciplinary, advanced design and critical thinking experience. Students will work in teams to integrate biological knowledge into the engineering design process. The course uses case studies to show how biological solutions can be transferred into engineering design. The case studies will include themes such as locomotion, materials, and sensing. By the end of the course, students will be able to use analogical design concepts to engineer a prototype based on biological function.
- MAE 418/ARC 418/ENE 428: Virtual and Augmented Reality for Engineers, Scientists, and ArchitectsVR/AR can enable engineers, scientists, and architects to plan and conduct their work in fundamentally new ways, visualize and communicate their findings more effectively, and work in environments that are otherwise difficult, impossible, or too costly to experience in person. This course explores the basic concepts of effective VR/AR experiences, builds skills needed to develop and support innovative science, engineering, or architecture projects. In the second half of the semester, working in small teams, students develop, implement VR/AR projects of their choice.
- MAE 423/ENE 423: Heat TransferThis course will cover fundamentals of heat transfer and applications to practical problems in energy conversion and conservation, electronics, and biological systems. Emphasis will be on developing a physical and analytical understanding of conductive, convective, and radiative heat transfer, as well as design of heat exchangers and heat transfer systems involving phase change in process and energy applications. Students will develop an ability to apply governing principles and physical intuition to solve multi-mode heat transfer problems.
- MAE 426: Rocket and Air-Breathing Propulsion TechnologyThe study of principles, flight envelopes, and engine designs of rocket and ram/scramjet propulsion systems. Topics include jet propulsion theory, space mission maneuver, combustion control, and system components of chemical and non-chemical rockets (nuclear and electrical propulsion), gas turbine, ramjet, and scramjet engines. Characteristics, optimal flight envelopes, and technical challenges of combined propulsion systems will be analyzed.
- MAE 427/ENE 427: Energy Conversion and the Environment: Transportation ApplicationsOverview of energy utilization in and environmental impacts of propulsion systems for ground and air transportation. Roughly half of the course will be devoted to reciprocating engines for ground transportation, and the other half of the course will be devoted to gas turbine engines for air transportation. The course will focus on device efficiency/performance and emissions with future outlooks for improvements in these areas including alternative fuels and alternative device concepts. Relevant thermodynamics, chemistry, fluid mechanics, and combustion fundamentals will be reviewed or introduced and will permeate the course material.
- MAE 434: Modern ControlThis course provides an introduction to modern state-space methods for robust control system design and analysis. Applications include controlling the performance of a variety of dynamical systems. Topics include stability, controllability and observability, state feedback control, observers and output feedback control and optimal and robust control design methods.
- MAE 436: Special Topics in Mechanical and Aerospace Engineering: Introduction to Hypersonic Aerodynamics and Thermal Protection DesignThe course covers some critical aspects of hypervelocity flight of manned and unmanned spacecrafts with an emphasis on dynamic load and heat shielding. It first addresses inviscid and viscous hypersonics neglecting high temperature effects, and develops the classical approach based on cold hypersonics. Then, the phenomena associated with high temperature effects are discussed. The heat transfer analysis of the thermal protection systems is addressed in the final part of the course. To assimilate the material, the students will be engaged in a project that will culminate in a report and an oral presentation of their work.
- MAE 440: Senior Independent WorkSenior independent work is the culminating experience for the mechanical and aerospace engineering programs. Students select a subject and adviser, define the problem to be studied and propose a work plan. Projects include elements of engineering design, defined as devising a system, component, or process to meet desired needs. A list of possible subjects of particular interest to faculty and staff members is provided. Students must submit a written final report and present their results to faculty, staff, fellow students, and guests at the end of the semester.
- MAE 442: Senior ThesisSenior thesis is a year-long independent study for individual students. It is the culminating experience for the mechanical and aerospace programs. Work begins in fall, but enrollment is in spring when a double grade is recorded. Projects include engineering design, defined as devising a system, component, or process to meet desired needs. Students develop their own topic or select a faculty proposed topic. Students create a work plan and select an adviser. A written progress report is expected at the end of the fall term. Students submit a written final report and make an oral presentation at the end of the spring term.
- MAE 444: Senior ProjectSenior project is a year-long independent study intended for students choosing to work in teams of two or more. It is the culminating experience in the mechanical and aerospace programs. Work begins in fall, but enrollment is in spring when a double grade is recorded. Projects include engineering design, defined as devising a system, component, or process to meet desired needs. Groups develop their own topic or select a faculty proposed topic. Groups create a work plan and select an adviser. A written progress report is due at the end of the fall term. Groups submit a written final report and make an oral presentation at the end of spring.
- MAE 463/ENV 463: Instabilities in Fluids: Linear and Non-linear Analysis of Waves and Patterns in the EnvironmentThis course describes natural patterns arising from instabilities in nature, and discusses their importance in the environment. We will analyze phenomena at various scales, as diverse as wave breaking at the ocean surface, internal mixing in the atmosphere and the ocean, volcanic plumes, convection cells in the atmosphere, the break-up of fluid ligaments or bubble bursting at an interface. The course will detail mathematical tools (linear and non-linear stability analysis, symmetry arguments, solutions to non-linear equations such as shocks and solitons), as well as present laboratory and numerical demonstrations of the instabilities.
- MAE 502/APC 506: Mathematical Methods of Engineering Analysis IITopics in complex analysis and functional analysis, with emphasis on applications in physics and engineering. Topics include power series, singularities, contour integration, Cauchy's theorems, and Fourier series; an introduction to measure theory and the Lebesgue integral; Hilbert spaces, linear operators, and adjoints; the spectral theorem, and its application to Sturm-Liouville problems.
- MAE 503: Directed ResearchUnder the direction of a faculty member, the student carries out a one-semester research project chosen jointly by the student and the faculty. Directed is normally taken during the first year of study in the PhD program. Students need to enroll at the beginning of the semester and must obtain permission from the instructor and the department. In the last week of the semester, students enrolled in the course meet once to present their research to the class.
- MAE 514: Master of Engineering Independent Project IIContinuation of MAE 513. Directed study for Master of Engineering students. The topic is proposed by the student and must be approved by the student's research advisor and have received approval from the MAE Graduate Committee.
- MAE 516: Bioinspired DesignThis bioinspired design course offers interdisciplinary, advanced design and critical thinking experience. Students work in teams to integrate biological knowledge into the engineering design process. The course uses case studies to show how biological solutions can be transferred into engineering design. The case studies include themes such as locomotion, materials, and sensing. By the end of the course, students are able to use analogical design concepts to engineer a prototype based on biological function.
- MAE 518/ARC 516/ENE 528: Virtual and Augmented Reality for Scientists, Engineers, and ArchitectsVR/AR can enable engineers, scientists, and architects to plan and conduct their work in fundamentally new ways, visualize and communicate their findings more effectively, and work in environments that are otherwise difficult, impossible, or too costly to experience in person. This course explores the basic concepts of effective VR/AR experiences and builds the skills needed to develop and support innovative science, engineering, or architecture projects. In the second half of the semester, working in small teams, students develop and implement VR/AR projects of their choice.
- MAE 528/AST 566: Physics of Plasma PropulsionThis course is an introduction to plasma propulsion with focus on mechanisms that control performance of plasma thrusters. A review of various plasma propulsion concepts and applicability to space missions; a review of fundamentals of low-temperature collisional plasmas, needed to discuss plasma propulsion before discussing the acceleration & dissipation mechanisms in Hall thrusters, magnetoplasmadynamic thrusters, pulsed plasma thrusters & inductive plasma thrusters, to derive expressions for the propulsive efficiencies of each of these concepts. The discussions are at a first-year graduate student or senior undergraduate level.
- MAE 531/ENE 531: CombustionChemical thermodynamics and kinetics, oxidation of hydrogen, hydrocarbons and alternate fuels, pollutant chemistry and control, transport phenomena, laminar premixed and nonpremixed flames, turbulent flames, ignition, extinction, and flammability phenomena, flame stabilization and blowoff, detonation and blast waves, droplet, spray and coal particle combustion, principles of engine operation.
- MAE 541/APC 571: Applied Dynamical SystemsPhase-plane methods and single-degree-of-freedom nonlinear oscillators; invariant manifolds, local and global analysis, structural stability and bifurcation, center manifolds, and normal forms; averaging and perturbation methods, forced oscillations, homoclinic orbits, and chaos; Melnikov's method, the Smale horseshoe, symbolic dynamics, and strange attractors.
- MAE 545: Special Topics in Mechanical & Aerospace Engineering: Introduction to Hypersonic Aerodynamics and Thermal Protection DesignThe course covers some critical aspects of hypervelocity flight of manned and unmanned spacecrafts with an emphasis on dynamic load and heat shielding. It first addresses inviscid and viscous hypersonics neglecting high temperature effects, and develops the classical approach based on cold hypersonics. Then, the phenomena associated with high temperature effects are discussed. The heat transfer analysis of the thermal protection systems is addressed in the final part of the course. To assimilate the material, the students are engaged in a project that culminates in a report and an oral presentation of their work.
- MAE 550/MSE 560: Lessons from Biology for Engineering Tiny DevicesIn this course we present a survey of problems at the interface of biology, physics and engineering to discuss how nature invented many tiny sensors, machines and structures that are important for functions of cells and organisms. Using this knowledge, we comment how to engineer and self-assemble tiny devices with DNA origami, how to design thin structures that can transform into specific shapes in response to external stimulus, how to make structures with tunable surface properties (drag, adhesion, hydrophobicity/hydrophilicity), how to make flexible electronics, how to make metamaterials with unusual properties, etc.
- MAE 552/CBE 557: Viscous Flows and Boundary LayersAn introduction to the mechanics of viscous flows. The kinematics and dynamics of viscous flows. Exact solutions to the Navier-Stokes equations. Lubrication theory. The behavior of vorticity. The boundary layer approximation. Laminar boundary layers with and without pressure gradients. Introduction to stability. Introduction to turbulence. Several case studies will be introduced to expose students to fluid mechanics themes in biology, polymer processing, complex fluids and reacting flows.
- MAE 563/AOS 563: Instabilities in Fluids: Linear and Non-Linear Analysis of Waves and Patterns in the EnvironmentThis course describes natural patterns arising from instabilities in nature, and discusses their importance in the environment. We analyze phenomena at various scales, as diverse as wave breaking at the ocean surface, internal mixing in the atmosphere and the ocean, volcanic plumes, convection cells in the atmosphere, the break-up of fluid ligaments or bubble bursting at an interface. The course details mathematical tools (linear and non-linear stability analysis, symmetry arguments, solutions to non-linear equations such as shocks and solitons), as well as present laboratory and numerical demonstration of the instabilities.
- MAE 598: Graduate Seminar in Mechanical & Aerospace EngineeringA seminar of graduate students and staff presenting the results of their research and recent advances in flight, space, and surface transportation; fluid mechanics; energy conversion; propulsion; combustion; environmental studies; applied physics; and materials sciences. There is one seminar per week and participation at presentations by distinguished outside speakers.
- SPI 353/MAE 353: Science and Global Security: From Nuclear Weapons to Cyberwarfare and Artificial IntelligenceThis course provides students with a basic technical understanding of the science and technology relevant to current and emerging national and global security issues. Topics covered in this course include nuclear weapons, biotechnology and biosecurity, delivery systems for weapons of mass destruction, cyberwarfare, global surveillance, quantum technologies, and artificial intelligence. In the second half of the semester, students work in small teams on in-depth case studies exploring a current or emerging global-security issue of their choice and combining both technical and policy analysis.