Mech and Aerospace Engr
- ANT 325/MAE 347/SPI 384: Robots in Human Ecology: A Hands-on Course for Anthropologists, Engineers, and PolicymakersAre robots as capable, autonomous, or dangerous as often depicted in the public imagination? Can robots save the world? If so, whose vision of the world do they actualize? This course provides opportunities for students from STEM, social sciences, and humanities to collaborate with Boston Dynamics' SPOT. Through in-class discussions about the potential roles, meanings, and ethics of robots in society and accompanying hands-on lab practicums manipulating a robot for generating its ethically-sound and community-engaged applications on campus, students will innovate and propose Princeton models of introducing robots in human ecology.
- APC 523/AST 523/MAE 507/CSE 523: Numerical Algorithms for Scientific ComputingA broad introduction to numerical algorithms used in scientific computing. The course begins with a review of the basic principles of numerical analysis, including sources of error, stability, and convergence. The theory and implementation of techniques for linear and nonlinear systems of equations and ordinary and partial differential equations are covered in detail. Examples of the application of these methods to problems in engineering and the sciences permeate the course material. Issues related to the implementation of efficient algorithms on modern high-performance computing systems are discussed.
- AST 309/MAE 309/PHY 309/ENE 309: The Science of Fission and Fusion EnergyPower from the nucleus offers a low-carbon source of electricity. Fission power is well developed, but carries risks associated with safety, waste, and nuclear weapons proliferation. Fusion energy research, which presents less such risk, is making important scientific progress and progress towards commercialization. We will study the scientific underpinnings of both of these energy sources, strengthening your physical insight and exercising your mathematical and computational skills. We will also ask ourselves the thorny ethical questions scientists should confront as they contribute to the development of new technologies.
- CEE 312/MAE 312: Statics of StructuresDevelops notions of internal forces and displacements, and instructs students how to design and analyze structures. Presents the fundamental principles of structural analysis, determination of internal forces, and deflections under the static load conditions, and introduces the bending theory of plane beams and the basic energy theorems. The theory of the first order will be developed for continuous girders, frames, arches, suspension bridges, and trusses, including both statically determinate and indeterminate structures. Basic principles for construction of influence lines and determination of extreme influences will be presented.
- ECE 346/COS 348/MAE 346: Intelligent Robotic SystemsRobotic systems are quickly becoming more capable and adaptable, entering new domains from transportation to healthcare. To reliably carry out complex tasks in changing environments and around people, these systems rely on increasingly sophisticated artificial intelligence. This course covers the core concepts and techniques underpinning modern robot autonomy, including planning under uncertainty, imitation and reinforcement learning, multiagent interaction, and safety. The lab component introduces the Robot Operating System (ROS) framework and applies the learned theory to hands-on autonomous driving assignments on 1/16-scale robot trucks.
- ECE 455/CEE 455/MAE 455/MSE 455: Optical and Photonic Systems for Environmental SensingThis class will teach you about optical and photonic sensing technologies and their applications to environmental monitoring. The course will contain elements of atmospheric science and Earth observation, fundamentals of optics, photonics and laser physics, as well as a survey of modern optical and spectroscopic sensing applications. In this course students will be asked to prepare two oral presentations and there will be three laboratory assignments focused on fundamentals of optical sensing
- ENE 308/MAE 308/GEO 308: Engineering the Climate: Technical & Policy ChallengesThis seminar focuses on the science, engineering, policy and ethics of climate engineering -- the deliberate human intervention in the world climate in order to reduce global warming. Climate/ocean models and control theory are introduced. The technology, economics, and climate response for the most favorable climate engineering methods (carbon dioxide removal, solar radiation management) are reviewed. Policy and ethics challenges are discussed.
- ENE 422/MAE 422: Introduction to the Electricity Sector-Engineering, Economics, and RegulationThis course provides an introduction to the electricity sector drawing on engineering, economics, and regulatory policy perspectives. It introduces the engineering principles behind various power generation technologies and transmission and distribution networks; the economics of electricity markets; and the regulation of electricity generation, transmission, distribution, and retail sales. Open challenges related to the growth of distributed energy resources, the transition to low-carbon electricity sources, and the role of the electricity sector in mitigating global climate change are also discussed.
- ENE 522/MAE 533: Introduction to the Electricity Sector-Engineering, Economics, and RegulationThis course provides an introduction to the electricity sector drawing on engineering, economics, and regulatory policy perspectives. It introduces the engineering principles behind various power generation technologies and transmission and distribution networks; the economics of electricity markets; and the regulation of electricity generation, transmission, distribution, and retail sales. Open challenges related to the growth of distributed energy resources, the transition to low-carbon electricity sources, and the role of the electricity sector in mitigating global climate change are also discussed.
- ENV 330/MAE 330: Ocean WavesThe class will discuss the physics of ocean surface waves and its impacts on human life. We will cover the principle of ocean waves propagation across the oceans, with analogies to optics and acoustics. Using historical observations and modern modeling tools, we will discuss wave forecasting with practical examples including planning of D-Day during the second world war, or local surf forecasting. The influence of ocean waves on human life will be discussed, from their role on beach morphology, mitigation of storm surge, or tsunamis. Finally, we will discuss the ubiquitous representation of waves in arts/movies.
- MAE 206: Introduction to Engineering DynamicsFormulation and solution of equations governing the dynamic behavior of engineering systems. Fundamental principles of Newtonian mechanics. Two and three dimensional kinematics and kinetics of particles and rigid bodies. Motion relative to moving reference frames. Impulse-momentum and work-energy relations. Free and forced vibrations of mechanical systems. Introduction to dynamic analysis of mechanical devices and systems.
- MAE 222: Mechanics of FluidsIntroduction to the physical and analytical description of phenomena associated with the flow of fluids. Topics include the principles of conservation of mass, momentum and energy; lift and drag; open channel flow; dynamic similitude; laminar and turbulent flow and an introduction to compressible subsonic and supersonic internal and external flows.
- MAE 224: Integrated Engineering Science LaboratoryStudents will conduct a series of prepared experiments throughout the year that will culminate in an independent project of the students' design involving fluid mechanics, thermodynamics and data acquisition tools. Concepts learned will be applied in subsequent labs involving expanding flows and lift and drag measurements. Experiments will include internal and external flows.
- MAE 228/EGR 228/CBE 228/ENE 228: Energy Technologies in the 21st CenturyThis course introduces the fundamental physical mechanisms behind sustainable energy technologies and the basic concepts to evaluate and compare their efficiency, environmental impact, and costs. Among others, we will examine the potential of wind energy, photovoltaics, geothermal energy, biofuels, and nuclear energy. We will also examine the concepts of intermittency and dispatchability of energy sources and discuss the relevance of the electric grid, energy storage, energy efficiency, and green buildings. Taken together, this will help us assess energy scenarios and possible pathways to a net-zero carbon energy future.
- MAE 305/MAT 391/EGR 305/CBE 305: Mathematics in Engineering IA treatment of the theory and applications of ordinary differential equations with an introduction to partial differential equations. The objective is to provide the student with an ability to solve problems in this field.
- MAE 306/MAT 392: Mathematics in Engineering IIThis course covers a range of fundamental mathematical techniques and methods that can be employed to solve problems in contemporary engineering and the applied sciences. Topics include complex analysis and integral transforms.
- MAE 321: Engineering DesignThis course introduces the technical foundation and basic processes of Mechanical Design, which are appropriate for the design of both mechanical systems, and components. The emphasis is on designing for the complete product life-cycle. Topics in parametric design and design optimization using Finite Element Analysis (FEA), Computer Aided Design (CAD), and Manufacturing (CAM) are introduced in the classroom and online and then reinforced by team and individual assignments.
- MAE 323: Aerospace StructuresThe course presents contemporary methods of mechanical and structural analysis used in Aerospace. Topics covered include: introduction to aerospace structures components and loads, equations of linear elasticity, virtual work, and energy formulations, and analytical and numerical methods for analyzing aerospace structures, including idealization and finite Element Analysis. If time allows, the course will cover advanced topics such as aeroelasticity and vibrations. The course will culminate in a final project where students will use analytical, numerical, and experimental methods to analyze and evaluate a representative aerospace structure.
- MAE 340: Junior Independent WorkIndependent work is a one term project. Student selects subject and advisor - defines problem to be studied and proposes work plan. A list of possible subjects of particular interest to faculty and staff members is provided. Written report due at end of semester to faculty, staff, fellow students and guests. 339 Fall Term project; 340 Spring Term project.
- MAE 340D: Junior Independent Work with DesignOne semester independent work project similar to MAE 339-340. Principle difference is that the project must incorporate aspects and principles of design for a system, product, vehicle, device, apparatus, or other design element. Written report at end of semester to faculty, staff, fellow students and guests. 339D Fall Term project; 340D Spring Term project.
- MAE 342: Space System DesignThis course studies the design of modern spacecraft and complex space missions. The principles and design aspects of key subsystems: structural, thermal, power, propulsion, attitude determination and control, etc., as well as systems engineering and design concepts will be covered. Parallel to the study of space systems, students will work in teams to design a space system to achieve a given mission objective, with their work demonstrated through design reviews and reports
- MAE 412: Microprocessors for Measurement and ControlIntroduction to microcomputers for measurement and control. This is a hardware course in the area of electro mechanical systems. Students build microcomputer controllers and apply them to the automation of various aspects of a model railroad. Students work in pairs on a term project. Projects involve mechanical design of mechanisms and structures, design of electronic circuits for sensing and control, and design of an 8-bit microcomputer that is integrated into a serial data network.
- MAE 423/ENE 423: Heat TransferThis course will cover fundamentals of heat transfer and applications to practical problems in energy conversion and conservation, electronics, and biological systems. Emphasis will be on developing a physical and analytical understanding of conductive, convective, and radiative heat transfer. Numerical methods will be introduced to simulate a variety of steady and unsteady heat transfer applications and will form the basis of the final project.
- MAE 426: Rocket and Air-Breathing Propulsion TechnologyThe study of principles, flight envelopes, and engine designs of rocket and ram/scramjet propulsion systems. Topics include jet propulsion theory, space mission maneuver, combustion control, and system components of chemical and non-chemical rockets (nuclear and electrical propulsion), gas turbine, ramjet, and scramjet engines. Characteristics, optimal flight envelopes, and technical challenges of combined propulsion systems will be analyzed.
- MAE 434: Modern ControlThis course provides an introduction to modern state-space methods for robust control system design and analysis. Applications include controlling the performance of a variety of dynamical systems. Topics include stability, controllability and observability, state feedback control, observers and output feedback control and optimal and robust control design methods.
- MAE 440: Senior Independent WorkSenior independent work is the culminating experience for the mechanical and aerospace engineering programs. Students select a subject and adviser, define the problem to be studied and propose a work plan. Projects include elements of engineering design, defined as devising a system, component, or process to meet desired needs. A list of possible subjects of particular interest to faculty and staff members is provided. Students must submit a written final report and present their results to faculty, staff, fellow students, and guests at the end of the semester.
- MAE 442: Senior ThesisSenior thesis is a year-long independent study for individual students. It is the culminating experience for the mechanical and aerospace programs. Work begins in fall, but enrollment is in spring when a double grade is recorded. Projects include engineering design, defined as devising a system, component, or process to meet desired needs. Students develop their own topic or select a faculty proposed topic. Students create a work plan and select an adviser. A written progress report is expected at the end of the fall term. Students submit a written final report and make an oral presentation at the end of the spring term.
- MAE 444: Senior ProjectSenior project is a year-long independent study intended for students choosing to work in teams of two or more. It is the culminating experience in the mechanical and aerospace programs. Work begins in fall, but enrollment is in spring when a double grade is recorded. Projects include engineering design, defined as devising a system, component, or process to meet desired needs. Groups develop their own topic or select a faculty proposed topic. Groups create a work plan and select an adviser. A written progress report is due at the end of the fall term. Groups submit a written final report and make an oral presentation at the end of spring.
- MAE 503: Directed ResearchUnder the direction of a faculty member, the student carries out a one-semester research project chosen jointly by the student and the faculty member. Without prior approval of the Director Graduate Studies, directed research can only be taken during the first year of study. At the beginning of the semester, students must submit the topic of the project and the faculty advisor to the Graduate Office. The project culminates in a final presentation in the style of a conference talk at the end of the semester.
- MAE 514: Master of Engineering Independent Project IIContinuation of MAE 513. Directed study for Master of Engineering students. The topic is proposed by the student and must be approved by the student's research advisor and have received approval from the MAE Graduate Committee.
- MAE 527: Physics of GasesPhysical and chemical topics of basic importance in modern fluid mechanics, plasma dynamics, and combustion science: statistical calculations of thermodynamic properties of gases; physical equilibria; quantum mechanical analysis of atomic and molecular structure including rotational and vibrational transitions; atomic-scale collision phenomena and excitation and ionization; emission, absorption, and propagation of radiation. Analyses of major greenhouse gases from point of view of molecular absorption and emission properties; discussion of effect of greenhouse gases concentration and disribution on climate equilibria.
- MAE 532: Combustion TheoryTheoretical aspects of combustion: the conservation equations of chemically-reacting flows; methods in mechanism reduction; computational diagnostics; activation energy asymptotics; chemical and dynamic structures of laminar premixed and nonpremixed flames; aerodynamics and stabilization of flames; pattern formation and geometry of flame surfaces; ignition, extinction, and flammability phenomena; turbulent combustion; boundary layer combustion; droplet, particle, and spray combustion; and detonation and flame stabilization in supersonic flows.
- MAE 541/APC 571: Applied Dynamical SystemsPhase-plane methods and single-degree-of-freedom nonlinear oscillators; invariant manifolds, local and global analysis, structural stability and bifurcation, center manifolds, and normal forms; averaging and perturbation methods, forced oscillations, homoclinic orbits, and chaos; Melnikov's method, the Smale horseshoe, symbolic dynamics, and strange attractors; introduction to ergodic theory and the ergodic theorems.
- MAE 553: Turbulent FlowThe course deals with the fundamentals of turbulent flows and it is addressed to second year graduate students. Physical and statistical descriptions of turbulence are treated and phenomenological theories of turbulent flows are critically reviewed. The course examines scales of motion; correlations and spectra; homogeneous, isotropic turbulent flows; free shear flows (jets, mixing layers and wakes); wall bounded flows (pipe and channel flows, boundary layers); modeling and simulations of turbulent flows (turbulent viscosity models, Reynolds stress modeling, LES, DNS, RANS-LES); and current directions in turbulence research.
- MAE 598: Graduate Seminar in Mechanical & Aerospace EngineeringA lecture of graduate students and staff presenting the results of their research and recent advances in flight, space, and surface transportation; fluid mechanics; energy conversion; propulsion; combustion; environmental studies; applied physics; and materials sciences. Participation at presentations will be attended by distinguished outside speakers. There is one lecture and one precept discussion per week.
- MSE 517/CEE 517/MAE 571: Structural and Material OptimizationThis class addresses the practical aspects, theory, implementation and utilization of optimization in conjunction with analysis tools. It aims to acquaint the student with the state-of-the-art optimization techniques and their application to engineering problems. Besides traditional methods, it introduces the modern and powerful topology optimization method together with its application to material and structural systems. In this context, it also introduces rapid prototyping and 3D/4D printing techniques at different scales.