Molecular Biology
- CBE 440/GHP 450/MOL 440: The Physical Basis of Human DiseaseThis course covers major diseases (cancer, diabetes, heart disease, infectious diseases), the physical changes that inflict morbidity and mortality, the design constraints for treatment, and emerging technologies that take into account these physical hurdles. Taking the perspective of the design constraints on the system (that is, the mass transport and biophysical limitations of the human body), we will survey recent innovations from the fields of drug delivery, gene therapy, tissue engineering, and nanotechnology.
- CHM 542/MOL 542: Principles of Macromolecular Structure: Protein Folding, Structure and DesignThis course is taught from the scientific literature. We begin the semester with several classic papers on protein folding. As the semester progresses, we read about protein structure, stability, and folding pathways. The latter part of the semester focuses on recent papers describing new research aimed toward the construction of novel proteins from "scratch." These papers cover topics ranging from evolution in vitro to computational and rational design. The course ends by discussing the possibility of creating artificial proteomes in the laboratory, and further steps toward synthetic biology.
- ISC 233/CHM 233/COS 233/MOL 233/PHY 233: An Integrated, Quantitative Introduction to the Natural Sciences IIAn integrated, mathematically and computationally sophisticated introduction to physics and chemistry, drawing on examples from biological systems. This year long, four course sequence is a multidisciplinary course taught across multiple departments with the following faculty: T. Gregor, J. Shaevitz (PHY); O. Troyanskaya (COS); J. Akey (EEB); E. Wieschaus, M. Wuhr (MOL); S. Biswas, J. Gadd, A., Kalra, O. Kimchi, A. Mayer, H. McNamara, C. Yuste (LSI). Five hours of lecture, one three-hour experimental lab, one three-hour computational lab.
- ISC 234/CHM 234/COS 234/MOL 234/PHY 234: An Integrated, Quantitative Introduction to the Natural Sciences IIAn integrated, mathematically and computationally sophisticated introduction to physics and chemistry, drawing on examples from biological systems. This year long, four course sequence is a multi-disciplinary course taught across multiple departments with the following faculty: T. Gregor, J. Shaevitz (PHY); O. Troyanskaya (COS); J. Akey (EEB); E. Wieschaus, M. Wuhr (MOL); J. Gadd, B. Husic, O. Kimchi, A. Mayer, H. McNamara (LSI). Five hours of lecture, one three-hour experimental lab, one three-hour computational lab.
- MOL 101/STC 101: From DNA to Human ComplexityThis lecture and lab course will acquaint non-biology majors with modern molecular biology focusing on topics of current interest to society. The course covers fundamental topics such as information storage and readout by DNA, RNA and proteins. The course addresses how recent scientific advances influence issues relevant to humanity including stem cells and CRISPR; the human microbiome and bacterial pathogens; vaccines and the current SARS-CoV-2 pandemic; how a single cell contains all the necessary instructions to build a complex multicellular organism; and how the human genome can be used to understand the evolution of modern humans.
- MOL 214/EEB 214/CBE 214: Introduction to Cellular and Molecular BiologyImportant concepts and elements of molecular biology, biochemistry, genetics, and cell biology, are examined in an experimental context. This course fulfills the basic biology requirement for students majoring in the biological sciences and satisfies the basic biology requirement for entrance into medical school and most other health professions schools.
- MOL 250/GHP 360: Food, Drugs and SocietyThe current environment in the US for the use and abuse of foods and drugs will be examined from a scientific fact-based perspective. Historical, economic, marketing, political, and public health drivers will be considered. Specific topics include government dietary recommendations (food politics), dietary supplements (from Vitamins to herbal extracts), pharmacology and ethical drug development (sulfa drugs, NSAIDS, etc), addiction and substance abuse (alcohol, nicotine, stimulants, opioids, etc), Alzheimer's disease and the problem of long-term care in an aging population, and Psychedelic drug use and abuse (psilocybin, mescaline, LSD, etc).
- MOL 290: Quantitative Methods in Cell and Molecular BiologyModern biology research increasingly relies on quantitative tools to make precise measurements of cell state. This course will provide an introduction to the experimental techniques and computational methods that enable the quantitative study of biological systems. We will start with an intro to programming using Python and we will employ the learned skills to analyze proteomics and sequencing data for studying gene networks within and across species, modeling biochemical reactions to study the dynamics of gene and protein networks, and extracting information about the spatial organization of biological systems using fluorescence imaging.
- MOL 320: Experimental Molecular BiologyMOL320 is a spring semester course offered to sophomores intending to concentrate in MOL and plan to study abroad, or have taken/are concurrently taking MOL348 and want an early introduction to research methods & laboratory experience. The purpose of MOL320 is to prepare you to be a contributing member of a research lab and to foster creative, critical thinking and effective communication skills. While completing original research, you will employ techniques used by both molecular biologists and developmental geneticists. You will explore scientific literature to understand prior research and will generate a final research paper on your work.
- MOL 340: Molecular and Cellular ImmunologyA broad survey of the field of immunology and the mammalian immune system. The cellular and molecular basis of innate and acquired immunity will be discussed in detail. The course will provide frequent examples drawn from human biology in health and disease.
- MOL 342: GeneticsBasic principles of genetics illustrated with examples from prokaryote and eukaryote organisms. Classical genetic techniques as well as molecular and genomic approaches will be discussed. The evolving concept of the gene, of genetic interactions and gene networks, as well as chromosome mechanics will be the focus of the course. Selected topics will include gene regulation, cancer genetics, the human biome, imprinting, and stem cells.
- MOL 345/CHM 345: BiochemistryThis course focuses on the fundamental biochemical principles that underlie cellular function. An emphasis will be placed on protein structure, function, and regulation. Additional topics covered will include metabolism and catalysis, and cutting-edge methodologies for studying macromolecules in health and disease systems.
- MOL 348: Cell and Developmental BiologyThe course will investigate the roles that gene regulation, cell-cell communication, cell adhesion, cell motility, signal transduction and intracellular trafficking play in the commitment, differentiation and assembly of cells into specialized tissues. The mechanisms that underlie development of multicellular organisms, from C. elegans to humans, will be examined using biochemical, genetic and cell biological approaches. In-class problem solving, group work, and active learning approaches will be used to emphasize key concepts and analyze experimental data.
- MOL 405: The Biology of ReproductionThe ultimate goal of every species is the successful contribution of an individual's genes to the next generation, leading to the evolution of diverse strategies to maximize reproductive success. First, we discuss various reproductive tactics employed in the animal kingdom, examining topics such as asexual and sexual reproduction, extent of parental investment, and maximizing reproductive lifespan. We then focus on human reproductive biology, highlighting age and environment-induced fertility issues, as well as cutting edge research into fertility treatments and assisted reproductive technologies employed in clinics which combat these issues.
- MOL 423/GHP 423: Molecular Basis of CancerWe will explore the molecular events leading to the onset and progression of human cancer. We will review the central genetic and biochemical elements that make up the cell cycle, followed by a survey of the signal transduction pathways and checkpoints that regulate it. We will discuss oncogenes, tumor suppressor and mutator genes that act in these pathways and review the role of viral oncogenes and their action on cells. We will investigate the role of cancer stem cells and the interaction between tumor and the host environment. We will explore specific clinical case studies in light of the molecular events underlying different cancers.
- MOL 431: Regulatory Mechanisms in DevelopmentHow do organisms ensure that genes are expressed at the right time and place as they develop from a single egg cell into a multicellular animal? In this seminar style course, we will explore some of the diverse mechanisms that control gene expression, including those involved in transcriptional regulation, epigenetic silencing, translational regulation and cell-cell signaling. By reading and critically evaluating the primary literature, we will explore many of the crucial molecular biology, cell biology and genetics techniques that have helped illuminate the gene regulatory mechanisms that are essential for animal development.
- MOL 433/CBE 434/GHP 433: BiotechnologyThis course will consider the principles, development, outcomes and future directions of therapeutic applications of biotechnology, with particular emphasis on the interplay between basic research and clinical experience. Topics to be discussed include production of hormones and other protein drugs, nucleic acid drugs and vaccines, gene therapy and gene editing, and molecular diagnostics. Reading will largely be from the primary literature.
- MOL 445: Pathogens, Pandemics, and TechnologiesMany organisms are agents of disease in humans, but few can cause a pandemic. This course will survey where pandemic pathogens come from, how they replicate and cause disease, and what technologies have been invented to combat them or predict where they may emerge next.
- MOL 485/QCB 485: Mathematical Models in BiologyThe course is intended for students interested in biological applications of mathematics and modeling in biology, aiming at demonstrating how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections will be made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models will be explored.
- MOL 506: Cell Biology and DevelopmentThe cell biology of tissues is discussed covering the molecules and fundamental concepts in cell communication, adhesion, shape, division, and differentiation. How cells become different from one another in a developing organism is explored, focusing on important concepts and developmental strategies using model systems. Primary literature is used to introduce seminal work, classic and modern experimental approaches, and outstanding questions in cell and developmental biology. Students are expected to learn to read critically, think beyond the reading, and participate in presenting and discussing the materials.
- MOL 518: Quantitative Methods in Cell and Molecular BiologyModern biology research increasingly relies on quantitative tools to make precise measurements of cell state. This course provides an introduction to the experimental techniques and computational methods that enable the quantitative study of biological systems. We start with an intro to programming using Python and we employ the learned skills to analyze proteomics and sequencing data for studying gene networks within and across species, modeling biochemical reactions to study the dynamics of gene and protein networks, and extracting information about the spatial organization of biological systems using fluorescence imaging.
- MOL 523: Molecular Basis of CancerWe explore the molecular events leading to the onset and progression of human cancer. We review the central genetic and biochemical elements that make up the cell cycle, followed by a survey of the signal transduction pathways and checkpoints that regulate it. We discuss oncogenes, tumor suppressor and mutator genes that act in these pathways and review the role of viral oncogenes and their action on cells. We investigate the role of cancer stem cells and the interaction between tumor and the host environment. We explore specific clinical case studies in light of the molecular events underlying different cancers.
- MOL 541: Research Projects in Molecular Biology (Laboratory Rotations)Students perform research in the laboratories of potential faculty advisors.
- MOL 561: Scientific Integrity in the Practice of Molecular BiologySatisfies the NIH mandate for training in the ethical practice of science. The course is discussion-based, and uses readings, videos, case studies and guest participants to examine basic ethical and regulatory requirements for the responsible conduct of research. Topics include: the nature of - and response to - research misconduct; collaborative research; protection of human and animal subjects; conflicts of interest and commitment; authorship, publication and peer review; mentorship; societal impacts of scientific research; diversity and inclusion in scientific research; and contemporary ethical issues in biomedical research.
- NEU 437/MOL 437/PSY 437: Computational NeuroscienceIntroduction to a mathematical description of how networks of neurons can represent information and compute with it. Course will survey computational modeling and data analysis methods for neuroscience. Example topics are short-term memory and decision-making, population coding, modeling behavioral and neural data, and reinforcement learning. Classes will be a mix of lectures from the professor, and presentations of research papers by the students. Two 90 minute lectures, one laboratory. Lectures in common between NEU 437/NEU 537.
- NEU 502A/MOL 502A/PSY 502A: Systems and Cognitive NeuroscienceA survey of modern neuroscience that covers experimental and theoretical approaches to understanding how the brain works. This semester builds on 501, focusing on how the circuits and systems of the brain give rise to cognition. The course covers the neural mechanisms responsible for vision, long-term memory, sleep, motor control, habits, decision making, attention, working memory, and cognitive control. How these functions are disrupted in neurodegenerative and neuropsychiatric disorders are also covered. This is the second term of a double-credit core lecture course required of all Neuroscience Ph.D. students.
- NEU 502B/MOL 502B: From Molecules to Systems to BehaviorThis lab course introduces students to the variety of experimental and computational techniques and concepts used in modern cognitive neuroscience. Topics include functional magnetic resonance imaging, scalp electrophysiological recording, and computational modeling. In-lab lectures provide students with the background necessary to understand the scientific content of the labs, but the emphasis is on the labs themselves, including student-designed experiments using these techniques. This is the second term of a double-credit core lab course required of all Neuroscience Ph.D. students.
- NEU 537/MOL 537/PSY 517: Computational NeuroscienceIntroduction to a mathematical description of how networks of neurons can represent information and compute with it. Course surveys computational modeling and data analysis methods for neuroscience. Example topics are short-term memory and decision-making, population coding, modeling behavioral and neural data, and reinforcement learning. Classes are a mix of lectures from the professor, and presentations of research papers by the students. Two 90 minute lectures, one laboratory. Lectures in common between NEU 437/NEU 537. Graduate students carry out a semester-long project.
- QCB 490/MOL 490: Molecular Mechanisms of Longevity: The Genetics, Genomics, and Cell Biology of AgingAging is a fascinating biological phenomenon because it seems inevitable, yet recent research suggests that longevity can be manipulated through genetics and environment. Moreover, aging is the major risk factor for a host of chronic and neurological diseases; thus, understanding the molecular regulation of aging will be critical in addressing these health issues in the future. We will explore the current state of the field, including genetic discoveries of longevity mutants, cell biological and metabolic characterization of aging animals, and genomic and computational analyses used to uncover molecular mechanisms that control longevity.